. RED BRICK"

The Data Warehouse Company™)

RED BRICK® WAREHOUSE
Version 5.1

RED BRICK VISTA™

USER’S GUIDE

The information in this document is subject to change without notice and does not
represent a commitment by Red Brick Systems. The software and/or databases
described in this document are furnished under a license agreement and can be
used or copied only in accordance with the terms of the agreement. Except as
permitted by such license, no part of this document and/or database may be
reproduced or transmitted in any form or by any means, electronic or mechanical
(including photocopying and recording), or transferred to information storage and
retrieval systems without the written permission of Red Brick Systems.

Restricted Rights: Use, duplication, or disclosure by the United States Government
is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013 or
subparagraphs (c)(1) and (2) of the Commercial Computer Software—Restricted
Rights at 48 CFR 52.227-19, as applicable.

0 Copyright 1991-1998 Red Brick Systems, Inc.
All rights reserved.
Printed in the USA.

RISQL, Red Brick, the Red Brick logo (wg# repsrick’), and The Data Warehouse
Company are registered trademarks of Red Brick Systems, Inc.

Red Brick Data Mine, Red Brick Data Mine Builder, Red Brick Vista, STARindex,
STARjoin, TARGETIndex, and TARGETjoin are trademarks of Red Brick Systems, Inc.

All other trademarks are the properties of their respective companies.

Revision number: 1
January, 1998
Part number: 502050

Red Brick Systems, Inc.
485 Alberto Way

Los Gatos, California 95032
USA

Telephone: +1 408 399 3200
+1 800 777 2585

. RED BRICK"

The Data Warehouse Company)

Contents

About This Document

Purpose vii

Audience vii

Organization viii

Related Documentation ix

Conventions xi
Syntax Notation xi
Syntax Diagrams Xii
Keywords and Punctuation xiv
Identifiers and Names xiv

Customer Support xv
Support Solutions Warehouse xv
General and Technical Questions xv
Troubleshooting Tips xvii
Documentation Questions and Comments xvii

1 Introduction to Red Brick Vista
Aggregations in the Data Warehouse 1-2
Aggregate Query Performance 1-2
The Query Rewrite System 1-3
How Aggregate Queries Are Rewritten 1-3
The Advisor 1-5
Summary 1-6

2 Key Concepts of Query Rewriting
Precomputed Views 2-2
Aggregate Tables 2-3
Aggregate Query Rewrites 2-3
Rollups and Hierarchies 2-6
Functional Dependencies 2-6
Derived Dimensions 2-9

Red Brick Vista User’s Guide iii

Contents

3 Using the Query Rewrite System
Creating Aggregate Tables 3-2
Populating Aggregate Tables 3-2
Example of an Aggregate Table 3-3
Creating Precomputed Views 3-5
CREATE VIEW...USING Command 3-5
Example View Definition 3-7
Cost-Based Analysis of Precomputed Views 3-8
Using Hierarchies 3-11
Explicit Hierarchies 3-11
Implicit Hierarchies 3-15
Optimizing Query Rewrites 3-17
Creating Derived Dimensions 3-17
Creating Indexes 3-22
Setting Up the Query-Rewriting Environment 3-23
Marking Precomputed Views Valid 3-23
Turning On the Query Rewrite System 3-24
Generating Statistics 3-24
Querying the RBW_VIEWS System Table 3-25
Making Precomputed Views Invisible to Client Tools 3-27
Checklist of Query-Rewriting Tasks 3-28

4 Query Rewrite Case Studies
General Instructions 4-2
Case 1—Rewriting a STARjoin Query 4-3
Case 2—Making Use of Explicit Hierarchies 4-8
Case 3—Optimizing Query Rewrites with Derived Dimensions 4-11
Case 4—Using Implicit Hierarchies to Rewrite Queries 4-16
Case 5—Rewriting Subqueries 4-20
Case 6—Rewriting a Query That Calculates Averages 4-23

iv Red Brick Vista User’s Guide

e -

5 Using the Advisor

Advisor Overview 5-2
Analysis of Query Patterns 5-2
Advisor System Tables 5-2
Advisor Log Files 5-3

Configuring the Advisor Logging System 5-3
Creating the Advisor Log Files 5-3
Logging Queries 5-4
Setting the ACCESS_ADVISOR_INFO Task Authorization 5-7
Defining Valid Hierarchies 5-8

Querying the Advisor 5-8
Inserting the Results of an Advisor Query Into a Table 5-8
Querying the RBW_PRECOMPVIEW_UTILIZATION Table 5-10
Querying the RBW_PRECOMPVIEW_CANDIDATES Table 5-12

Interpreting the Results of Advisor Queries 5-17
BENEFIT Column 5-17
SIZE and REDUCTION_FACTOR Columns 5-17
REFERENCE_COUNT Column 5-18
Combining the Results 5-18

Understanding the BENEFIT Column 5-19
How the BENEFIT Column Is Calculated 5-19
What the Numbers Mean 5-20
Uniform Probability 5-21

Advisor System Table Column Descriptions 5-24
RBW_PRECOMPVIEW_CANDIDATES Table 5-24
RBW_PRECOMPVIEW_UTILIZATION Table 5-26

Checklist of Advisor Tasks 5-28

A Glossary
Index

Red Brick Vista User’s Guide v

Contents

.’ RED BRICK"

vi Red Brick Vista User’s Guide

About This Document

Purpose

This document explains how to use the Red Brick Vista™ option, an integrated
aggregate navigation and advice system that improves query performance by
rewriting queries against detail data to use precomputed aggregate data.

Audience

The primary audience is the warehouse administrator who wants to improve
query performance by using an efficient aggregation strategy. A secondary
audience is the application developer or consultant who needs to know how to
design schemas and write queries that will make the best use of the Red Brick
Vista option.

A working knowledge of Red Brick® Warehouse products is assumed, as well
as familiarity with the Structured Query Language (SQL).

Red Brick Vista User’s Guide vii

About This Document

Organization

Organization

This document introduces the concepts behind the design of the Red Brick
Vista option, then explains how to use its two main components—the query
rewrite system and the Advisor:

Chapter 1, “Introduction to Red Brick Vista,” discusses the problems
warehouse administrators face in managing aggregate tables and
introduces the Red Brick Vista option as a solution.

Chapter 2, “Key Concepts of Query Rewriting,” explains the concepts
behind the query rewrite system that you need to understand before using
the Red Brick Vista option.

Chapter 3, “Using the Query Rewrite System,” explains how to rewrite
aggregate queries by creating precomputed views linked to aggregate
tables.

Chapter 4, “Query Rewrite Case Studies,” concentrates on several examples
of query rewriting that use the tables in the sample Aroma database.

Chapter 5, “Using the Advisor,” explains how to query the Advisor system
tables for advice about the usefulness of both existing precomputed views
and new candidate views.

Appendix A, “Glossary,” defines the key terms used throughout the
document.

Complete syntax descriptions of the SQL commands introduced in this
document are presented in the SQL Reference Guide.

viii Red Brick Vista User’s Guide

Related Documentation

About This Document
Related Documentation

The standard documentation set for Red Brick Warehouse includes the
following documents:

Installation and Configuration
Guide

Warehouse Administrator’s
Guide

Table Management Utility
Reference Guide

SQL Reference Guide

SQL Self-Study Guide

RISQL Entry Tool and RISQL
Reporter User’s Guide

Messages and Codes Reference
Guide

Release Notes

Installation and configuration information, as well as
platform-specific material, about Red Brick Warehouse
and related products. Customized for either
UNIX-based or Windows NT systems.

Description of warehouse architecture, supported
schemas, and other concepts relevant to warehouse
databases. Procedural information for designing and
implementing a warehouse database, maintaining a
database, and tuning a database for performance.
Includes a description of the system tables and the
configuration file (rbw.config). Customized for either
UNIX-based or Windows NT systems.

Description of the Table Management Utility, including
all activities related to loading and maintaining data.
Also includes information about data replication and the
rb_cm copy management utility.

Complete language reference for the Red Brick Systems
SQL implementation and RISQLD extensions for ware-
house databases.

Example-based review of SQL and introduction to the
RISQL extensions, the macro facility, and Aroma, the
sample database.

Complete guide to the RISQL Entry Tool, a com-
mand-line tool used to enter SQL statements, and the
RISQL Reporter, an enhanced version of the RISQL
Entry Tool with report-formatting capabilities.

Complete listing of all informational, warning, and error
messages generated by warehouse products, including
probable causes and recommended responses. Also
includes event log messages that are written to the log
files.

Information pertinent to the current release that was
unavailable when the documents were printed.

Red Brick Vista User’s Guide ix

About This Document
Related Documentation

In addition to the standard documentation set, the following documents are
included for specific sites:

Red Brick Vista
User's Guide

SQL-BackTrack for
Red Brick Warehouse
User's Guide

Client Connector Pack
Installation Guide

ODBC Connectivity Guide

Red Brick Data Mine
User’s Guide

Red Brick Data Mine
Builder™ User’s Guide

Description of the Red Brick Vista aggregate navigation and
advice system, including procedures for rewriting queries
and getting advice on the best set of aggregate tables and
views to create. Includes detailed examples of queries
whose performance can be dramatically increased by using
aggregate navigation.

The complete guide to SQL-BackTrack™ for Red Brick
Warehouse, a command-line interface for backing up and
recovering warehouse databases. Includes procedures for
defining backup configuration files, performing online and
checkpoint backups, and recovering the database to a
consistent state.

Procedures for installing and configuring the Red Brick
ODBC Diriver, the RISQL Entry Tool, and the RISQL
Reporter on client systems. Included for those sites that
purchase the Client Connector Pack.

Information about ODBC conformance levels as well as
instructions for compiling and linking an ODBC application
using the Red Brick ODBCIlib SDK.

Description of the data mining process, and procedural
information for using the Red Brick Data Mine™ SQL-based
interface to find hidden or unpredictable relationships
among the data in a data set. Included for those sites that
purchase the Red Brick Data Mine option.

Description of the data mining process, and procedural
information for performing data mining using Red Brick’s
GUI-based product in a Microsoft Windows environment.

Additional references you might find helpful include:

= Anintroductory-level book on SQL

= An introductory-level book on relational databases

= Documentation for your hardware platform and operating system

Online Documentation

The English version of the Red Brick Warehouse documentation is also
available in Adobe Acrobat format (PDF) on a separate CD-ROM.

Red Brick Vista User’s Guide

About This Document
Conventions

Conventions

Throughout Red Brick Systems technical publications, the following notation
and syntax conventions are used:

= Computer input and output, including commands, code, and examples,
appear in Courier

= Information that you enter or that is being emphasized in an example
appears in Courier bold to help you distinguish it from other text.

= Filenames, system-level commands, and variables appear in Palatino italic
or Courier italic , depending on the context.

= Document titles always appear in Palatino italic.

= Names of database tables and columns are capitalized (Sales table, Dollars
column). Names of system tables and columns are in all uppercase
(RBW_INDEXES table, TNAME column).

Syntax Notation

This guide uses the following conventions to describe the syntax of
operating-system commands:

Command Element | Example Convention

Values and table_name Items that you replace with an appropriate

parameters name, value, or expression are in italic type
style.

Optional items [1 Optional items are enclosed by square brack-

ets. Do not type the brackets.

Choices ONE | TWO Choices are separated by vertical lines;
choose one if desired.

Required choices {ONE|TWO} | Required choices are enclosed in braces;
choose one. Do not type the braces.

Default values ONE]TWO Default values are underlined, except in
graphics where they are in bold type style.

Repeating items name, ... Items that can be repeated are followed by a
comma and an ellipsis. Separate the items
with commas.

Language O, . Parentheses, commas, semicolons, and peri-
elements ods are language elements. Use them exactly
as shown.

Red Brick Vista User’s Guide xi

About This Document
Conventions

Syntax Diagrams

This guide uses diagrams built with the following components to describe the
syntax for statements and all commands other than system-level commands:

Component Meaning

> Statement begins.

v

Statement syntax continues on next line. Syntax
elements other than complete statements end
with this symbol.

A 4

Statement continues from previous line. Syntax
elements other than complete statements begin
with this symbol.

»« Statement ends.

SELECT Required item in statement.

Optional item.
I— D|ST|NCTJ

DBATO — Required item with choice. One and only one
E CONNECT TO— item must be present.
SELECT ON —
Optional item with choice. If a default value
ASC exists, it is printed in bold.
DESC
¢ , Optional items. Several items are allowed; a
comma must precede each repetition.
ASC
DESC

Xxii Red Brick Vista User’s Guide

About This Document
Conventions

The syntax elements shown above are combined to form a diagram as follows:

¢ ALL | ON —table_name —»
|— PRIVILEGES J

DELETE
INSERT
SELECT
UPDATE

—— TO —¢—— db_username >«

- role_name —
—— PUBLIC ——

»— GRANT

Complex syntax diagrams such as the one for the following statement are
repeated as point-of-reference aids for the detailed diagrams of their
components. Point-of-reference diagrams are indicated by their shadowed

corners, gray lines, and reduced size:

SELECT select_list from_clause
where_clause

group_hy_clause having_clause when_clause

The point-of-reference diagram is then followed by an expanded diagram of
the shaded portion—in this case, the select_list:

v

*

v

i: ALL ! |
DISTINCT ~ expression

table_name.*

Red Brick Vista User’s Guide Xiii

About This Document

Conventions

Keywords and Punctuation

Keywords are words reserved for statements and all commands except
system-level commands. When a keyword appears in a syntax diagram, it is
shown in uppercase. You can write a keyword in upper- or lowercase, but you
must spell the keyword exactly as it appears in the syntax diagram.

Any punctuation that occurs in a syntax diagram must also be included in
your statements and commands exactly as shown in the diagram.

Identifiers and Names

Metavariables serve as placeholders for identifiers and names in the syntax
diagrams and examples. A metavariable can be replaced by an arbitrary name,
identifier, or literal, depending on the context. Metavariables are also used to
represent complex syntax elements that are expanded in additional syntax
diagrams. When a metavariable appears in a syntax diagram, an example, or
text, it is shown in lowercase italic.

The following syntax diagram uses metavariables to illustrate the general form
of a simple SELECT statement:

»— SELECT —column_name — FROM — table_name ——»p«

When you write a SELECT statement of this form, you replace the
metavariables column_name and table_name with the name of a specific column

and table.

xiv Red Brick Vista User’s Guide

About This Document
Customer Support

Customer Support

Please review the following information before contacting the Customer
Support Center at Red Brick Systems.

Support Solutions Warehouse
The Support Solutions Warehouse is the Customer Support Center’s external
web site, an online resource that registered Red Brick customers can use to:
= Submit new cases.
= Read release notes.
= Find answers to frequently asked questions (FAQSs).
= Search the Problems and Solutions database.

To use the Support Solutions Warehouse, point your web browser to the
following URL and enter your registered username and password:

http://www.redbrick.com/RBCustomer/index.htm

If you do not have a registered username and password, contact the Customer
Support Center by telephone, fax, or e-mail.

General and Technical Questions

If you have general sales-related questions or technical questions about Red
Brick products or services, contact Red Brick Systems as follows:

Telephone

General Questions (408) 399-3200 or 1 (800) 777-2585
Technical Questions (408) 399-7100 or 1 (800) 727-1866
FAX

General Questions (408) 399-3277

Technical Questions (408) 399-3297

Internet e-mail

General Questions info@redbrick.com
Technical Questions support@redbrick.com
World Wide Web www.redbrick.com

Red Brick Vista User’s Guide xv

About This Document

Customer Support

XVi

Existing Cases

If you want to inquire about the status of an existing case, please have the case
number ready. The case number will always be given to you by the support
engineer who logs the case or first contacts you. This number is used to keep
track of all the activities performed during the resolution of each problem.

New Cases

If you want to log a new case, please have the following information ready:

Red Brick Warehouse version
Platform and operating-system version
Error messages returned by Red Brick Warehouse or the operating system

Concise description of the problem, including any commands or operations
performed prior to the occurrence of the error message

List of Red Brick Warehouse and/or operating-system configuration
changes made prior to the occurrence of the error message

If you think the problem concerns client-server connectivity, please have the
following additional information ready:

Name and version of the client tool in use

Version of Red Brick ODBC Driver in use (if applicable)

Name and version of client network and/or TCP/IP stack in use
Error messages returned by the client application

Warehouse and client locale specifications

Red Brick Vista User’s Guide

About This Document
Customer Support

Troubleshooting Tips

You can often reduce the time it takes to close your case by providing the
smallest possible reproducible example of your problem. The more you can
isolate the cause of the problem, the more quickly the support engineer can
help you resolve it.

= For SQL query problems, try removing columns or functions, or restating
WHERE, ORDER BY, or GROUP BY clauses until you can isolate the part of the
statement causing the problem.

= For TMU load problems, verify the datatype mapping between the source
file and the target table to ensure compatibility. Try loading a small test set
of data to determine whether the problem concerns volume or data format.

= For connectivity problems, verify that the network is up and running by
issuing the rbping command from the client to the host. If possible, try
another client tool to see if the same problem arises.

Documentation Questions and Comments

If you have questions or comments about the Red Brick Warehouse
documentation, please contact the Technical Publications Department at
Red Brick Systems as follows:

Telephone +1 408 399 3200
+1 800 727 1866 (USA only)

Internet e-mail docs@redbrick.com

Red Brick Vista User’s Guide xvii

About This Document
Customer Support

.’ RED BRICK®

xviii Red Brick Vista User’s Guide

1

Introduction to
Red Brick Vista

This chapter introduces the Red Brick Vista™ option as a tool for optimizing
aggregate query performance. The following sections are included:

Aggregations in the Data Warehouse
Aggregate Query Performance

The Query Rewrite System

The Advisor

Summary

Red Brick Vista User’s Guide 1-1

Introduction to Red Brick Vista
Aggregations in the Data Warehouse

Aggregations in the Data Warehouse

Decision-support queries often require aggregations—typically, sums of
revenues or costs over periods of time, markets, or products. Such queries can
be expensive in terms of both selecting the appropriate rows to sum and
performing the aggregate calculation. Consequently, the quickest way to run
an aggregation query is not to run it at all, but to precompute the aggregate
totals and store them in separate tables.

Although this sounds like a simple solution to aggregate query performance, it
causes administrators to create, load, and maintain a very large number of
aggregate tables, and it requires application developers and users to manually
rewrite their queries as new aggregate tables enter or leave the schema. Add to
these problems the fact that aggregate tables usually require a lot of disk space
and take a long time to load, and developing applications for
high-performance aggregate queries becomes a very difficult task.

To help administrators guarantee good query performance, minimize the
maintenance workload, and keep their users’ applications simple and stable,
an integrated solution for working with aggregate tables is required, not just a
separate mechanism for precomputing the aggregate records.

Aggregate Query Performance

The Red Brick Vista option offers a systematic approach to precomputing
aggregate data for decision-support queries. The key to this approach is that
users always query the same set of database tables; however, before each query
is executed, a cost-based analysis determines whether the query can be
intercepted and rewritten to improve its performance. In addition, statistics
about query execution are logged so that administrators can find out how
efficiently the existing aggregation strategy is working, as well as how to
improve that strategy.

The Red Brick Vista option consists of two logical components:

= The query rewrite system, or aggregate navigator, which intercepts and
rewrites queries to use aggregate tables. Queries are rewritten transparently
to client applications and end users.

= The Advisor—a query-logging and analysis facility that can be queried for
advice on the size and relative benefits of both existing aggregate tables and
new tables that would be useful to create.

1-2 Red Brick Vista User’s Guide

Introduction to Red Brick Vista
The Query Rewrite System

The Query Rewrite System

The Red Brick Vista option is fully integrated with the RDBMS engine. Queries
are intercepted and rewritten by the warehouse server, not by a separate piece
of software. This is not the case with many commercial aggregate navigation
systems, which function as middleware programs in between the RDBMS and
the query tool. There are two advantages to the integrated approach:

= Aggregation information is stored in the system tables along with all the
other metadata for the database, making knowledge of all database activity
centralized. The result of this integration is consistency; for example, if the
aggregate table data is stale, the system knows about it instantly and does
not use the table to rewrite queries (unless requested to do so).

= Optimization strategies are known to the RDBMS but not necessarily
known or heeded in the middleware case.

You create database objects for aggregate query rewriting by using a set of
RISQLP extensions to standard SQL commands and some new commands
specific to the Red Brick® Warehouse server. Everything that the administrator
needs to do to make query rewriting possible can be done via the RISQL Entry
Tool (or any other ODBC-compliant client tool) and the Table Management
Utility (TMU).

How Aggregate Queries Are Rewritten

The query rewrite system relies on the existence of precomputed views. A
precomputed view defines a query whose results are stored in an associated
aggregate table. The administrator creates and loads the aggregate table (or
uses an existing aggregate table), then defines the view with a query
expression that reflects the exact contents of the table.

The administrator knows that the precomputed view exists, but the database
users need not. When a query is submitted, the query rewrite system evaluates
the precomputed views the administrator has created and, if possible, rewrites
the query to select from aggregate tables that are much smaller than the tables
in the original query.

Where possible, joins are simplified or removed, and depending on the degree
of consolidation that occurs between the detail and aggregate data, query
response times are highly accelerated. Moreover, queries can be rewritten
against a precomputed view even when the query and the view definition do
not match exactly.

Red Brick Vista User’s Guide 1-3

Introduction to Red Brick Vista
The Query Rewrite System

For detailed information about the query rewrite system, refer to Chapters 2, 3,
and 4:

= The concept of precomputed views is further explained in Chapter 2, “Key
Concepts of Query Rewriting.”

= The process of creating database objects to make query rewriting possible is
described in Chapter 3, “Using the Query Rewrite System.”

= Several detailed examples of rewritten queries are presented in Chapter 4,
“Query Rewrite Case Studies.”

1-4 Red Brick Vista User’s Guide

Introduction to Red Brick Vista
The Advisor

The Advisor

The Advisor is an integral part of the Red Brick Vista option. The Advisor
provides a facility to log activity of aggregate queries against a database. From
the logged queries, you can analyze the following:

= The use of existing aggregates in the database.

= Potential new aggregates to create that can improve query performance.

As the database is used, the Advisor logs queries that are rewritten and queries
that would benefit from being rewritten if the appropriate aggregate table
existed. After a period of time, the DBA uses the Advisor to analyze the
aggregate query logs by querying one of the Advisor system tables:

e RBW_PRECOMPVIEW_UTILIZATION to analyze the use of existing
precomputed views in the database.

= RBW_PRECOMPVIEW_CANDIDATES to view the optimal set of precomputed
views that the Advisor suggests based on the query activity in the log and
any existing precomputed views.

Queries against the Advisor system tables perform detailed analysis of the
information stored in the logs. The analysis is based on sophisticated
algorithms that determine the best set of aggregate tables for the actual query
history. As part of the analysis, a benefit is assigned to each existing view and
to each candidate view. The Benefit column in the Advisor system tables is a
cost metric based on the number of rows saved by processing the query
through the precomputed view instead of the detail table and the number of
times the view has been used (for existing views) or the number of times the
view would have been used (for candidate views).

For detailed information about configuring and using the Advisor, refer to
Chapter 5, “Using the Advisor.”

Red Brick Vista User’s Guide 1-5

Introduction to Red Brick Vista
Summary

Summary

Used in combination with other Red Brick Warehouse techniques for
accelerating query performance—such as STARjoin™ and TARGETjoin™
processing—the Red Brick Vista option offers the warehouse administrator a
flexible set of features for optimizing aggregation queries.

The process of getting advice, creating precomputing views, and using the
guery rewrite system is iterative, as shown in the following diagram. This
combination of features allows the administrator to continuously improve the
aggregation strategy while users query the same set of detail tables. Query
performance improves but the user’s view of the database schema does not
change.

| System Rewrites Users’ Queries |

P R’

Users Query Database | | Advisor Logs Query Statistics

T Red Brick *
Vista

DBA Creates Precomputed Viewsl | DBA Queries the Advisor

X s

| DBA Creates and Loads Aggregate Tables |

The following chapters expand on the concepts and tasks introduced in this
chapter, using examples based on the Aroma database. This database is
installed during the installation of the warehouse software and is described in
detail in the SQL Self-Study Guide.

1-6 Red Brick Vista User’s Guide

2

Key Concepts of
Query Rewriting

Before using the Red Brick Vista option to rewrite aggregate queries, you need
to understand several concepts behind the design of the query rewrite system.
A clear understanding of these concepts is critical to using the system
effectively and ensuring the integrity of rewritten query results.

This chapter contains the following sections:

e Precomputed Views
= Rollups and Hierarchies

Red Brick Vista User’s Guide 2-1

Key Concepts of Query Rewriting
Precomputed Views

Precomputed Views

A precomputed view is a view that is linked to a database table known as a
precomputed table. The view defines a query, and the table contains the
precomputed results of the query.

In the sense that it defines a query, a precomputed view is similar to a regular
view; however, a query in a regular view is not precomputed into a table. The
results of a query in a regular view must be computed every time the view is

referenced, whereas a query in a precomputed view is already computed and
its results stored in the associated precomputed table.

Regular View View Definition = Query Definition
View Definition Query Definition
Precomputed
View + = +
Precomputed Table Results of Query

A query defined in a precomputed view is not precomputed automatically. The
database administrator must populate the table linked to the view with either a
TMU LOAD DATA operation or an SQL INSERT INTO...SELECT statement. In this
way, existing aggregate tables (as well as new aggregate tables) can be
integrated into an application that uses the Red Brick Vista option.

A view can be said to be precomputed only when both of the following
statements are true:

1. Itis linked to a table.
2. The linked table is populated with data.

Furthermore, the Red Brick Vista option does not validate the data used to
populate the precomputed table. The administrator must ensure that the table
contains the exact result set that would be returned by the query defined in the view. If
the administrator fails to validate the data in this way, rewritten queries will
return incorrect results.

2-2 Red Brick Vista User’s Guide

Key Concepts of Query Rewriting
Precomputed Views

Aggregate Tables

An aggregate table is a special case of a precomputed table: it is a database table
that stores the results of an aggregate query defined in an associated
precomputed view.

Typically, an aggregate query uses a standard SQL function such as SUM or
COUNT to aggregate factual data such as sales totals over given periods of
time. Other aggregation queries use a GROUP BY clause to select distinct rows
of dimensional data from a large dimension table, such as distinct
combinations of quarters and years or districts and regions. In these ways,
aggregation queries roll up rows of data that have a fine granularity into groups
of rows that have a coarser granularity.

Throughout this document, the term aggregate table is used consistently to refer
to a table associated with a precomputed view. This terminology is used
because in the Red Brick Vista option a precomputed view definition always

contains an aggregate query.

Aggregate Query Rewrites

Precomputing query results is a powerful means of speeding up query
performance. The Red Brick Vista option realizes the performance gain by
intercepting and rewriting users’ queries to use precomputed views.

However, space and maintenance costs make precomputing the results of
every possible aggregate query prohibitive. There is a practical limit to the
number of precomputed views and tables that can be efficiently created and
maintained. The Red Brick Vista option solves this problem in two ways:

= By rewriting queries even when they do not exactly match the view
definition:

— A query that requests some subset of the data in the view can be
rewritten. See page 4-3.

— Queries that apply additional calculations to the view data (by using a
RISQL display function, for example) can be rewritten. See page 4-3.

— Queries that group by columns of a coarser granularity than the
grouping columns in the view can be rewritten, such as queries grouped
by the State column when the view is grouped by City. This feature is
explained on page 2-6, and examples are presented on page 4-8.

= By logging rewritten query activity and offering advice on the optimal set
of precomputed views to create. For details about this functionality, refer to
Chapter 5, “Using the Advisor.”

Red Brick Vista User’s Guide 2-3

Key Concepts of Query Rewriting
Precomputed Views

In these ways, and in combination with other Red Brick Warehouse techniques
for accelerating query performance (such as STARjoin and TARGETjoin
processing), the Red Brick Vista option improves query performance while
minimizing both space requirements and the administrator’s maintenance
workload. For information about indexing requirements for query rewriting,
refer to Chapter 3, “Using the Query Rewrite System.”

Example

A group of retail sales analysts routinely request a report that compares sales
totals for specific products during specific quarters. Using the Aroma database,
the analyst’s query joins the Sales fact table to the Product and Period
dimension tables:

User’s Query
select prod_name, gtr, sum(dollars) as total_sales
from sales, product, period
where sales.prodkey = product.prodkey
and sales.classkey = product.classkey
and sales.perkey = period.perkey
group by prod_name, qtr;

To take advantage of the Red Brick Vista option, the administrator creates and
populates the Product_Sales aggregate table:

Aggregate Table Definition

create table product_sales
(prod_name char(30), gtr char(5), dollars dec(13,2));

INSERT Statement for the Aggregate Table

insert into product_sales
select prod_name, qgtr, sum(dollars) as total_sales
from sales, product, period
where sales.prodkey = product.prodkey
and sales.classkey = product.classkey
and sales.perkey = period.perkey
group by prod_name, qtr;

2-4 Red Brick Vista User’s Guide

Key Concepts of Query Rewriting
Precomputed Views

Then the administrator creates a precomputed view associated with the
Product_Sales aggregate table. The view definition contains a query expression
that reflects the exact contents of the aggregate table:

Precomputed View Definition

create view product_sales_view(prod_name, qtr, dollars) as
select prod_name, gtr, sum(dollars) as total_sales
from sales, product, period
where sales.prodkey = product.prodkey
and sales.classkey = product.classkey
and sales.perkey = period.perkey
group by prod_name, qtr
using product_sales (prod_name, qtr, dollars);

Using the Product_Sales_View, the query rewrite system can intercept the
multi-table join query and replace it with a scan of the Product_Sales aggregate
table. The query rewrite system assigns table names, rewrites join predicates,
and represents queries in a form that will provide optimal query performance.

The SQL generated by the query rewrite system in this case would be
equivalent to the following query:

select * from product_sales;

Note: This example represents the simplest approach to using the query
rewrite system and demonstrates how the system works rather than the
best way to use it; in most cases, Red Brick Systems does not recommend
the definition of aggregate tables that are isolated from the database
schema. Several more practical examples, which involve aggregate
tables that can be efficiently joined to dimension tables, are presented in
Chapter 4, “Query Rewrite Case Studies.”

For more information about the process of creating precomputed views and
aggregate tables, refer to Chapter 3, “Using the Query Rewrite System.”

Red Brick Vista User’s Guide 2-5

Key Concepts of Query Rewriting
Rollups and Hierarchies

Rollups and Hierarchies

Aggregate queries group or “roll up” values of a finer granularity into smaller
sets of values of a coarser granularity. The performance gain offered by the
guery rewrite system derives from the precomputation of these rollups.
However, one of the innovative and powerful features of the Red Brick Vista
option is the ability to rewrite queries that require additional rollups, involving
columns of a coarser granularity still than the grouping columns of the view.

In other words, the Red Brick Vista option can be used to rewrite a large
number of queries that do not match the query defined in the view. For
example, the view might define a query that returns rows grouped by a Month
column, yet this view can be used to rewrite queries grouped by the Qtr and
Year columns, despite the fact that neither of these columns is named in the
guery defined by the view.

If this rollup capability did not exist, the administrator would have to create
three views—grouped by Month, Qtr, and Year, respectively—or one very
wide view grouped by all three columns. The following sections explain how
rollups work.

Functional Dependencies

Rollups to columns not defined in precomputed views are made possible by
the existence of functional dependencies inherent in warehouse data. A
functional dependency is a many-to-one relationship shared by two columns of
values. In other words, a functional dependency from column X to column Y is
a constraint that requires two rows to have the same value for the Y column if they
have the same value for the X column.

The two columns might be in the same table or different tables. For example, if
a functional dependency exists between the Store_Number and City columns
in a Store table, it must be true that whenever the value in the Store._ Number
column is, say, Store#56, the value in the City column is the same —Los Angeles,
for example. This relationship is many-to-one because there could be many
stores in a city, but a given store can only be in one city. Similarly, the City
column in the Store table might have a many-to-one relationship with a Region
column in the Market table; for example, if the city is Los Angeles, the region is
always West.

The existence of a functional dependency allows precomputed views grouped
by columns of a finer granularity to be used to rewrite queries grouped by
columns of a coarser granularity. For example, the existence of a

Store_ Number-to-City functional dependency means that it is safe to group the

2-6 Red Brick Vista User’s Guide

Key Concepts of Query Rewriting
Rollups and Hierarchies

Store_Number values into distinct City values. If a precomputed view is
grouped by Store_ Number, it is not necessary to create another view grouped
by City; the same view can be used to rewrite queries that constrain on one or
both of these columns.

As long as the query rewrite system knows about the functional dependencies
that exist in the database, it can use them intelligently to rewrite queries that
require a rollup beyond the scope of the precomputed view definition. In this
sense, there are two types of functional dependencies—those known to the
guery rewrite system by default and those that must be declared by the
warehouse administrator.

Dependencies Declared by the Administrator

The query rewrite system is not aware of the functional dependencies that exist
between non-key columns in the database. For example, if a view is grouped
by the Month column in the Period table and dependencies exist from Month

to Qtr and from Qtr to Year, both dependencies need to be declared. After they

have been declared, the query rewrite system can use the same precomputed

view to rewrite queries grouped by any combination of the three columns.

Declaring these dependencies also helps the Red Brick Vista Advisor

recommend an optimal set of candidate views.

The mechanism for declaring a functional dependency is the CREATE
HIERARCHY command. A CREATE HIERARCHY statement names pairs of
columns that satisfy functional dependencies and identifies the tables to which
the columns belong. (In the context of the Red Brick Vista option, the terms
functional dependency and hierarchy are synonymous.)

Functional dependencies declared with CREATE HIERARCHY statements are
not validated by the warehouse server. A many-to-one relationship is assumed
to exist between the two columns, and the query rewrite system will use the
dependency regardless of the data values stored in the columns. Therefore, it is
the administrator’s responsibility to ensure the validity of each explicitly defined
hierarchy before declaring it. Otherwise, the query rewrite system might return
incorrect results.

Red Brick Vista User’s Guide 2-7

Key Concepts of Query Rewriting
Rollups and Hierarchies

For example, compare the pairs of values in the following table. If the Period
table contains the second set of values, a hierarchy from Qtr to Year would be
valid because there is a unique first-quarter value for each year, a unique
second-quarter value for each year, and so on. If the Period table contains the
first set of values, however, the hierarchy would not be valid because the Qtr
column has the same first-quarter value (Q1) for 1997, 1998, and beyond.

Invalid Relationship Valid Relationship
Qtr Column Year Column Qtr Column Year Column
Q1 1997 Q1_97 1997
Q2 1997 Q2_97 1997
Q3 1997 Q3_97 1997
Q4 1997 Q4_97 1997
Q1 1998 Q1_98 1998
Q2 1998 Q2_98 1998
Q3 1998 Q3_98 1998
Q4 1998 Q4_98 1998
Q1 1999 Q1_99 1999

For information about querying the data to verify that a hierarchy is valid,
refer to page 3-14. For the complete syntax of the CREATE HIERARCHY
command, refer to the SQL Reference Guide.

2-8 Red Brick Vista User’s Guide

Key Concepts of Query Rewriting
Rollups and Hierarchies

Dependencies Known Implicitly to the Query Rewrite System

Hierarchies that follow the path of a primary key/foreign key relationship are
implicitly known to the query rewrite system. The result of this knowledge is
that a view grouped by the Sales.Perkey column, where Perkey is a foreign key
column that references the Period table, can be used automatically to rewrite
gueries grouped by any combination of columns in the Period table.

This behavior is also true for queries grouped by columns in outboard tables
(tables referenced by dimension tables). For example, a view grouped by the
Sales.Storekey column, where Storekey is a foreign key column that references
the Store table and Store.Mktkey is a foreign key column that references the
Market table, can be used automatically to rewrite queries that group by any
combination of columns in the Store and Market tables. For examples of rewritten

queries that demonstrate the use of implicit hierarchies, refer to page 4-16. -
2

Derived Dimensions

Derived dimensions are aggregate dimension tables that contain a subset of the
columns in the corresponding detail dimension. These tables can be joined to
aggregate fact tables to form an aggregate table “family.” Precomputed views
associated with derived dimension tables optimize the performance of
rewritten queries that require additional rollups because they simplify the
generated SQL and facilitate efficient indexing.

For detailed information about creating and using derived dimensions, refer to
page 3-17 and the case study that begins on page 4-11.

Red Brick Vista User’s Guide 2-9

Key Concepts of Query Rewriting
Rollups and Hierarchies

.’ RED BRICK"

2-10 Red Brick Vista User’s Guide

3

Using the Query
Rewrite System

The query rewrite system offers substantial performance gains when users’
gueries request aggregations of factual information stored in large databases.
This chapter explains how to make query rewriting possible by creating
precomputed views and declaring hierarchies.

These procedures assume that you have a clear understanding of the concepts
introduced in Chapter 2. In Chapter 4, several tutorial-based examples focus
on specific queries and how they are rewritten.

This chapter is divided into the following sections:
= Creating Aggregate Tables

= Creating Precomputed Views

= Using Hierarchies

= Optimizing Query Rewrites

= Setting Up the Query-Rewriting Environment
= Checklist of Query-Rewriting Tasks

For reference information and complete syntax diagrams for each SQL
command described in this chapter, refer to the SQL Reference Guide.

Red Brick Vista User’s Guide 3-1

Using the Query Rewrite System
Creating Aggregate Tables

Creating Aggregate Tables

3-2

In general terms, aggregate tables contain information that has a coarser
granularity (fewer rows) than the detail records used to load data warehouse
tables. For example, in a retail database, the transaction-level data drawn from
the OLTP system might be in the form of individual sales receipts. The
Sales_Receipts fact table would contain this detail data, but the records in that
table might also be aggregated over certain time periods to produce a set of
aggregate tables (Sales_Daily, Sales_Monthly, and so on).

In the context of the Red Brick Vista option, an aggregate table is a special case of
a precomputed table. It is a physical database table defined expressly for the
purpose of storing the results of an aggregate query defined in a precomputed
view.

An aggregate table is created with a standard CREATE TABLE statement. It does
not have to share a primary key/foreign key relationship with other tables in
the database. However, a common design strategy involves creating a “family
of aggregate tables,” including a referencing aggregate table that references
one or more aggregate dimension tables known as derived dimensions. This
strategy is a means of optimizing query-rewriting performance, as described
on page 3-17.

Populating Aggregate Tables

Aggregate tables can be loaded with either Table Management Utility (TMU)
LOAD DATA operations or INSERT INTO...SELECT statements.

For information about the TMU and the Auto-Aggregate feature, refer to the
Table Management Utility Reference Guide. For the syntax of the INSERT
command, refer to the SQL Reference Guide.

Red Brick Vista User’s Guide

Using the Query Rewrite System
Creating Aggregate Tables

Example of an Aggregate Table

The following example is based on the sample Aroma database, which is
described in detail in the SQL Self-Study Guide.

The retail schema of the Aroma database consists of the detail Sales table and
six dimension tables—Period, Store, Product, Promotion, Market, and Class.
The Market and Class tables are outboard tables. The Dollars column in the
Sales table represents totals per day, per store, per product, per promotion. For
example, a single row in the fact table might record that on January 2, 1996, the
San Jose Roasting Company sold $95.00 of whole-bean Aroma Roma coffee to
customers using Aroma catalog coupons.

If users routinely submit queries that request sales totals per some time period,
per some store or geographical area (such as per day, per region or per month, per
state), the administrator might define a Store_Sales table that contains sales
totals for all products and all promotions per day, per store. This aggregate table
would retain the same relationship to the Store and Period dimension tables as
the detail Sales table but would not reference the other dimensions in the
Aroma retail schema.

Aggregate Table

Store_Sales Period
Store
) perkey perkey
Bl storekey ¢ storekey date
mktkey mktkey dollars day
hqg_city store_type week
hq_state store_name month
district street qtr
region city year
state
| zip

For example, a single row in this aggregate table might record that on
January 2, 1996, total sales at the San Jose Roasting Company were $4,288.50.

Red Brick Vista User’s Guide 3-3

Using the Query Rewrite System
Creating Aggregate Tables

CREATE TABLE Statement

The CREATE TABLE statement for Store_Sales would look like this:

create table store_sales

(perkey int not null, storekey int not null, dollars dec(13,2),
primary key (perkey, storekey),

foreign key (perkey) references period (perkey),

foreign key (storekey) references store (storekey))

maxrows per segment 50000;

It is not necessary to define an entirely new set of aggregate tables for use with
the Red Brick Vista option; existing aggregate tables can be associated with
precomputed views. However, the contents of an existing aggregate table must
match the definition of its precomputed view (see page 3-5).

INSERT INTO...SELECT Statement

The INSERT statement used to load the Store_Sales table would look like this:

insert into store_sales

(select perkey, storekey, sum(dollars)
from sales

group by perkey, storekey);

This is a very simple example of an aggregate table whose data is drawn from a
single fact table and grouped by a subset of the foreign keys that make up the
detail table’s primary key. The Store_Sales table contains less than 15,000 rows,
whereas the detail Sales table contains almost 70,000 rows.

For examples of other types of aggregate tables whose data is drawn from joins
of multiple detail tables and grouped by non-key columns, refer to Chapter 4,
“Query Rewrite Case Studies.”

3-4 Red Brick Vista User’s Guide

Using the Query Rewrite System
Creating Precomputed Views

Creating Precomputed Views

The query rewrite system uses precomputed views to determine which queries
can be rewritten to improve performance. A precomputed view is a special type
of view that is linked to an aggregate table. The aggregate table definition
(CREATE TABLE statement) describes the columns and datatypes that the table
contains, whereas the precomputed view definition (CREATE VIEW...USING
statement) describes the exact contents of those columns; it describes how, in
terms of an SQL query expression, the aggregate data is precomputed from the
detail data.

In this sense, the view is “precomputed” when the aggregate table is loaded with
the appropriate data. Creating a precomputed view does not populate or
“materialize” its associated aggregate table. The administrator must ensure
that the view definition and the TMU or SQL language used to load the
aggregate table evaluate to the same contents. (Precomputed views can be
defined before or after their aggregate tables are loaded.)

CREATE VIEW...USING Command

A precomputed view is defined with a CREATE VIEW...USING statement. The
statement contains two distinct blocks of information:

= A query expression that “selects” the data for the aggregate table from one
or more tables—typically a detail-level fact table and some of its dimension
tables. The select list must include at least one aggregation column or at
least one grouping column. The grouping columns in the select list and
GROUP BY clause can be key or non-key columns (or a combination of the
two).

Issued as a SELECT statement, the query expression used to define the view
must return a result set that exactly matches the contents of the named
aggregate table.

= A USING clause that names the aggregate table and its columns. (Without
this clause, the CREATE VIEW statement creates a regular view, not a
precomputed view.) Each precomputed view you create must use a
different aggregate table.

For example:

create view store_sales_view as
select perkey, storekey, sum(dollars) as dollars
from sales
group by perkey, storekey

using store_sales (perkey, storekey, dollars);

Red Brick Vista User’s Guide 3-5

Using the Query Rewrite System
Creating Precomputed Views

Aggregation Columns

Aggregation columns in precomputed view definitions must be of the form

set _function (expression)

where set_function is one of the following aggregation functions:

e SUM
* MIN
* MAX
= COUNT

and expression is a simple or compound expression that contains column names
from the detail fact table in the FROM clause of the view definition and/or
constants.

The COUNT DISTINCT and COUNT(*) functions are also supported.

Note the following restrictions:

= Expressions used as arguments to the COUNT function must be simple
expressions.

= Expressions that contain scalar functions, RISQL display functions, and
subqueries are not supported.

= The expression for the SUM function must be numeric.

= The AVG set function cannot be used; however, AVG queries can be
rewritten if the appropriate aggregate table contains SUM and COUNT
values for the same column. For an example, refer to “Case 6—Rewriting a
Query That Calculates Averages” on page 4-23.

= The DISTINCT function can only be used as an argument to the COUNT
function. SELECT DISTINCT queries cannot be used.

For detailed information about set functions and expressions, refer to the
SQL Reference Guide.

Examples

The following expressions are examples of valid aggregation columns,
assuming that the Sales table is the detail fact table named in the FROM clause
of the view definition:

sum(sales.dollars)
min(sales.dollars/sales.quantity)

max((sales.quantity) * 10)

3-6 Red Brick Vista User’s Guide

Using the Query Rewrite System
Creating Precomputed Views

Precomputed Query Expressions

The query expression defined for a precomputed view is also restricted in the
following ways:

= [t cannot contain a subquery, a HAVING clause, or a WHEN clause.

= Join predicates must be expressed in the WHERE clause, with equality
conditions only.

For the complete syntax of the CREATE VIEW...USING command, refer to the
SQL Reference Guide.

Example View Definition

The following diagram illustrates the definition of a precomputed view. The
guery in the view definition aggregates data derived from the detail Sales table
and stores the data in the Store_Sales aggregate table.

Sales

perkey
classkey

. prodkey
Detail | storekey
Table | promokey
dollars
quantity

Store_Sales_View

create%iew store_sales_view as

select Perkey, storekey, sum(dollars) as dollars
from sales Pljecomputed
group by perkey, storekey View

using store_sales (perkey, storekey, dollars);

|

Store_Sales

perkey
storekey
dollars

Aggregate
Table

This precomputed view can be used to rewrite a large number of queries that
select from the Sales, Period, and Store tables. For specific examples, refer to
“Case 4—Using Implicit Hierarchies to Rewrite Queries” on page 4-16.

Red Brick Vista User’s Guide 3-7

Using the Query Rewrite System
Creating Precomputed Views

Cost-Based Analysis of Precomputed Views

Query rewriting is cost-based; that is, every valid precomputed view in the
database is evaluated before the optimal SQL is generated for each “block™ of
the query. In this context, a block is a query expression. For example, a
subquery is a separate query block, and each query expression on either side of
a UNION operator is a separate query block. The cost-based analysis chooses
the best possible rewrite for each block by considering the size of the aggregate
table associated with each view and the joins required to rewrite the query
with that table.

Because the query rewrite system considers every valid view before generating
the rewritten SQL, the query rewrite system incurs some overhead of its own
when the database contains a large number of views. For example, if there are
50 valid views in the database, a UNION query (two query blocks) will trigger
100 “view checks,” each one requiring a fraction of a second to complete. These
fractions of a second add to the query-processing time incurred to compute the
result set. Precomputed views are not screened, except in terms of being
marked valid or invalid—as discussed under “Marking Precomputed Views
Valid” on page 3-23.

Indexes Not Considered by the Cost Model

The query rewrite system does not take into account the indexes available to
rewrite queries; therefore, indexing is an essential prerequisite to using the Red
Brick Vista option. For example, query rewrites that involve aggregate table
families in a star schema must make use of STAR indexes and TARGET indexes
equivalent to those defined on the detail tables they replace. For examples of
rewritten queries optimized by the use of indexes, refer to

“Case 3—Optimizing Query Rewrites with Derived Dimensions” on page 4-11.

For information about standard approaches to indexing database tables, refer
to the Warehouse Administrator’s Guide.

Rewritten INSERT INTO...SELECT Statements

SQL statements used to insert rows into tables can be rewritten as well as
gueries that select rows from tables. If you are using INSERT INTO...SELECT
statements to populate your aggregate tables, you can dramatically increase
the performance of the INSERT operations by creating and loading aggregate
tables and precomputed views in order of granularity (from finest to coarsest).

3-8 Red Brick Vista User’s Guide

Using the Query Rewrite System
Creating Precomputed Views

For example, if you intend to create a set of aggregate Sales tables with data
grouped by different periods of time, you should create and populate the
Weekly_Sales table before you create the Monthly_Sales, Quarterly Sales, and
Annual_Sales tables. After you have created and populated the Weekly_Sales
table, create its precomputed view, mark it valid, and turn the query rewrite
system on (see page 3-23). When you create the Monthly_Sales table, the
INSERT statement you use to populate the table will be rewritten to use the
Weekly Sales aggregate table. Repeat this “cascading insert” process for each
table and view combination.

Queries That Cannot Be Rewritten

Regardless of the validity and definition of precomputed views, some types of
gueries cannot be rewritten. The following list is not exhaustive, but it does
describe the main classes of queries that cannot be rewritten.

Queries that contain BREAK BY and RESET BY clauses.
Queries that contain outer joins.
Subqueries in the WHERE clause of DELETE and UPDATE statements.

Queries whose GROUP BY clauses contain compound expressions. For
example, the following query cannot be rewritten because the GROUP BY
clause references an expression that contains an arithmetic operator:

select perkey +1 as day, sum(dollars) as total_sales
from sales
group by day;

For information about compound expressions, refer to the SQL Reference
Guide.

= Queries that contain multiple references to the same table in the FROM
clause. For example, the following self-join query cannot be rewritten
because its FROM clause contains two references to the Product table:

select a.prod_name as products, a.pkg_type, sum(dollars)
from product a, product b, sales
where a.prod_name = b.prod_name
and a.pkg_type <> b.pkg_type
and sales.prodkey = a.prodkey
and sales.classkey = a.classkey
group by a.prod_name, a.pkg_type
order by products, a.pkg_type;

For more information about self-joins, refer to the SQL Self-Study Guide.

Red Brick Vista User’s Guide 3-9

Using the Query Rewrite System
Creating Precomputed Views

< Queries that contain both a UNION, INTERSECT, or EXCEPT set operator and
a predicate on the result of the set operation. For example, the following
guery can be rewritten:

select perkey from period
union
select perkey from sales;

However, the following query contains a predicate on the result of the
UNION operation and cannot be rewritten:

select * from
(select storekey from sales
union
select storekey from store) as t1
where tl.storekey <10 ;

3-10 Red Brick Vista User’s Guide

Using the Query Rewrite System
Using Hierarchies

Using Hierarchies

When an aggregate query requires a coarser grouping of the data than the
grouping expressed in the precomputed view, the query rewrite system can
compute the additional rollup to answer the query using that view. Because of
this extended rollup feature, the administrator can define a relatively small
number of views that can speed up most, if not all, of the aggregate queries
that users routinely submit.

The key to this query-rewriting flexibility is the exploitation of functional
dependencies inherent in warehouse data (see page 2-6). These dependencies
follow the path of primary key/foreign key relationships that are an integral
part of the warehouse schema design; as long as the query rewrite system
knows that these dependencies exist, they can be used to extend the range of
gueries that can be rewritten.

The following sections explain how functional dependencies are made known
to and used by the query rewrite system.

Explicit Hierarchies

An explicit hierarchy is a functional dependency defined with a CREATE
HIERARCHY statement. The declaration of explicit hierarchies is a routine task
that prepares the database to make optimal use of the Red Brick Vista option,
in much the same way that defining primary key/foreign key relationships is a
routine prerequisite for creating database tables.

The definition of hierarchies not only extends the usability of existing
precomputed views; it also gives the Advisor more information to work with
when it generates candidate views. Therefore, it is recommended that
hierarchies be created for all the functional dependencies in the database,
regardless of existing or anticipated aggregation strategies.

Caution: Hierarchies must be defined with great care. The declaration of
hierarchies on columns whose values do not satisfy a many-to-one
relationship might cause rewritten queries to return incorrect results,
without warning. The warehouse server does not validate hierarchies
when they are declared; nor does it inform the user when a valid
hierarchy becomes invalid because of modifications to the database.
It is the administrator’s responsibility to ensure the validity of a
hierarchy before declaring it and to drop valid hierarchies should
they become invalid.

Red Brick Vista User’s Guide 3-11

Using the Query Rewrite System
Using Hierarchies

For examples of valid and invalid functional dependencies, refer to
“Dependencies Declared by the Administrator” on page 2-7.

CREATE HIERARCHY Command

This command gives the hierarchy a unique name, then identifies the columns
(and tables) that satisfy the functional dependency. A single CREATE
HIERARCHY statement can define multiple dependencies, and each
dependency can reference a pair of columns from the same table or two
different tables.

For example, the following hierarchy declares that a many-to-one relationship
exists between the Qtr and Year columns in the Period table. This relationship
is valid because every row in the Period table that contains a given value in the
Qtr column has the same value in the Year column. For example, when the Qtr
value is Q1_96, the Year value is always 1996.

Period

perkey
date
day
week Detail
month Table
qtr
year

create hierarchy qgtr_year

Hierarchy | (from period(qtr)
to period(year));

Now that the query rewrite system knows that this dependency exists in the
data, it will be able to use a precomputed view grouped by the Qtr column to
rewrite queries grouped by the Year column. For specific examples of this kind
of rewrite, refer to “Case 2—Making Use of Explicit Hierarchies” on page 4-8.

If the columns named in a hierarchy are from two different tables, the tables
must have a foreign key/primary key relationship. This kind of hierarchy
expresses a functional dependency between the from column and the foreign
key column that references the table that contains the to column. Via this
functional dependency, rollups to any column in the referenced table are
implied.

3-12 Red Brick Vista User’s Guide

Using the Query Rewrite System
Using Hierarchies

For example, the following CREATE HIERARCHY statement declares a
functional dependency between the Store.City and Market.District columns,
but the query rewrite system interprets this relationship as a functional
dependency between Store.City and Store.Mktkey.

Detail Dimension Tables

Store
. Market storekey
Hierarchy mktkey mktkey
hg_cit store_type

create hierarchy city_district hg_sta)t/e store_r?/apme
(from store(city) to market(district) district ¢—| street’
on StOI'e_ka); region I— C|ty

state

= zip

Given knowledge of this hierarchy, the query rewrite system can use a
precomputed view grouped by the City column of the Store table to rewrite
gueries grouped by any column in the Market table.

If the tables in a hierarchy contain multiple foreign key/primary key
relationships, the statement must specify the constraint name that defines the

foreign-key reference. The constraint name store_fkc is optional in the previous
example because only one foreign key/primary key relationship exists
between the two tables (Mktkey to Mktkey).

A hierarchy can be dropped with the DROP HIERARCHY command, and the
RBW_HIERARCHIES system table can be queried to obtain a list of explicitly
defined hierarchies in the database.

For the syntax of the CREATE HIERARCHY and DROP HIERARCHY commands
and information about foreign-key constraint names, refer to the SQL Reference
Guide. For information about system tables, refer to the Warehouse
Administrator’s Guide.

Red Brick Vista User’s Guide 3-13

Using the Query Rewrite System
Using Hierarchies

Verifying the Validity of Hierarchies

To verify that a functional dependency exists in the data, run the following
guery, where from_column and to_column are the columns on which the
hierarchy will be defined, and table_name is the name of the detail dimension
table to which those columns belong:

select from_column , count(distinct to_column)
from table_name
group by from_column ;

If the result of the COUNT(DISTINCT) function is 1 for all the rows in the result
set, the hierarchy is valid. For example, the results of the following query show
that the Qtr-to-Year hierarchy is valid:

select gtr, count(distinct year)
from period
group by qtr;

QTR
Q1_94
Q1 95
Q1 96
Q2 94
Q2 95
Q3 94
Q3_95
Q4_94
Q4_95

PRRPRRRRERRERE

If you are running the COUNT(DISTINCT) query on a very large dimension
table, include a HAVING clause to verify that all the rows return 1 without
having to scan the entire result set. For example:

select qtr, count(distinct year) as count_col
from period

group by qtr
having count_col <> 1;

QTR COUNT_COL

In this case, the fact that the query returns no rows verifies that the hierarchy is
valid.

3-14 Red Brick Vista User’s Guide

Using the Query Rewrite System
Using Hierarchies

If the hierarchy you want to create refers to columns in different tables, the
COUNT(DISTINCT) function must operate on the foreign key column from the
referencing table. For example:

select store_type, count(distinct mktkey)
from store
group by store_type;

STORE_TYPE
Large 4
Medium 5
Small 8

Note that the Mktkey column, which is a foreign key in the Store table and the
primary key of the Market table, is the argument of the COUNT(DISTINCT)
function in this case. The results of this query demonstrate that a hierarchy
from the Store_Type column to any column in the Market table would not be
valid.

Implicit Hierarchies

Implicit hierarchies are many-to-one relationships that already exist between
columns and tables by virtue of their primary key/foreign key relationships.
The existence of these hierarchies is known to the query rewrite system when it
uses a precomputed view grouped by one or more key columns. In turn, when
a query constrains on a non-key column from either the same table as the
grouping key column or another referenced table, the view can be used to rewrite
queries grouped by any column in either table. These kinds of rollups are possible
regardless of the definition of any explicit hierarchies.

The Store_Sales_View illustrated on page 3-7 is an example of a view definition
grouped by key columns. The view is grouped by Perkey and Storekey, which
are the primary key columns of the Period and Store tables, respectively, and
foreign key columns that make up the primary key of the Store_Sales aggregate
table. A query that requests sums of dollars from the detail Sales table grouped
by any column in the Period table and/or any column in the Store table can be
rewritten to use this view.

Red Brick Vista User’s Guide 3-15

Using the Query Rewrite System
Using Hierarchies

Implicit rollups will also work between the Store table and its outboard table,
Market. For example, a query that requests sales figures grouped by the Region
or District columns in the Market table can be rewritten to use Store_Sales. This
is possible because Storekey is a grouping column in the precomputed view
and there is a known primary-key/foreign-key relationship between the Store
and Market tables.

Store
Market
"™ storekey
Rollups from mktkey € mktkey
Mktkey to hq_city store_type gtooI rltlejlgesyf rtc())m
All Other hq_state store_name All Other
Market Columns district st_rteet Store Columns
region ci - J
9 sta)t/e Including Mktkey
zip

For specific examples of queries that can be rewritten using implicit
hierarchies, refer to page 4-16.

3-16 Red Brick Vista User’s Guide

Using the Query Rewrite System
Optimizing Query Rewrites

Optimizing Query Rewrites

Although the query rewrite system can rewrite a large number of queries
based on the existence of precomputed views and hierarchies, optimal
performance is not guaranteed for some rewritten queries unless the
administrator also creates two more structures:

= Derived dimensions
= Indexes on aggregate tables

Creating Derived Dimensions

Although the notion of aggregating data implies the manipulation of additive
facts such as sales figures and costs, dimension table data can also be
“aggregated” in logical ways. For example, product brands can be grouped
into distinct product subcategories, categories, and departments, and days into
weeks, months, quarters, and years.

Aggregate dimension tables are known as “derived dimensions” because they
derive from an existing dimension table and contain some subset of its
columns. The granularity of these columns is equal to or coarser than the
granularity of the referencing aggregate fact table. Any logical subset of
columns can be used; for example, you could define a derived Market
dimension with three columns—State, District, and Region—or with any two
of those columns, or even with any one of those columns.

Although the query rewrite system can roll up from non-key grouping
columns as long as the functional dependencies in the database have been
declared with CREATE HIERARCHY statements, derived dimensions simplify
the generated SQL and optimize query performance in these cases.

A good rule of thumb is to define a derived dimension whenever you have
declared a hierarchy between two columns from the same table and the first
column (the from column in the hierarchy definition) is a non-key column.

Note: If an explicit hierarchy is declared between columns in different tables,
the precomputed view for the derived dimension must be grouped by
the from column in the hierarchy and the foreign key column that
references the table in which the to column resides. For example, if the
Qtr column is in the Periodl table, the Year column is in the Period2
table, and there is a primary key/foreign key relationship on the
Periodl.Yearkey and Period2.Yearkey columns, the precomputed view
must be grouped by Period1.Qtr and Periodl.Yearkey (not
Period2.Year).

Red Brick Vista User’s Guide 3-17

Using the Query Rewrite System
Optimizing Query Rewrites

Simplified SQL Generation

When aggregate data is grouped by non-key columns and explicit hierarchies
are used to rewrite queries, the generated SQL is quite complex. For example,
if there is no derived dimension for the Period table, queries that require sales
totals by Year when the aggregate Sales table is grouped by Qtr will require a

join to the detail Period table. At the detail level, the Qtr values are not unique,
S0 some GROUP BY processing is necessary to find the Year for each Qtr value.

However, in the derived dimension, the Qtr values are unique primary keys, so
this additional processing is not required. In other words, by precomputing the
grouped Qtr and Year rows into the derived dimension, the system avoids
having to compute those rows as part of each query rewrite.

In a derived dimension, the column with the finest granularity is defined as its
primary key, creating a primary-key/foreign-key relationship between the
aggregate fact table and the derived dimension. Therefore, it is easy to create a
STAR index that can join the family of aggregate tables; this index is equivalent
to the STAR index that joins the detail tables in the same schema.

To summarize, if the administrator creates a precomputed view linked to an
aggregate Sales table grouped by the Qtr column, the following additional
objects will optimize rewrites of queries grouped by Year:

= A precomputed view linked to a derived Period dimension that contains
only the Qtr and Year columns. This table would be referenced by the
aggregate Sales table, and the Qtr column would be defined as the primary
key.

= A hierarchy between the Qtr and Year columns in the Period table. Note
that the hierarchy definition must refer to those columns in the detail
dimension table, not the derived dimension. Also, the data in those
columns must satisfy the functional dependency that the hierarchy
declares, as explained on page 3-11.

= A STAR index on the aggregate Sales table to join it to the derived Period
dimension.

Without the derived dimension and the STAR index, queries that group by Qtr
and Year would still be rewritten, but queries grouped by Year might be
rewritten with sub-optimal performance.

3-18 Red Brick Vista User’s Guide

Using the Query Rewrite System
Optimizing Query Rewrites

The following diagram illustrates this scenario. Because its values are unique,
the Qtr column can be defined as the primary key of the derived dimension,
Period_Qtr. In turn, the Qtr_Store_Sales aggregate table is defined to contain a
Qtrkey column that is a foreign-key reference to the Qtr column.

The Store and Market dimension tables are not “derived” in this example and
have the same relationship to both the detail Sales table and the aggregate
Qtr_Store_Sales table. The relationships in this “family of aggregate tables”
preserve the STARjoin and TARGET]join capabilities of the detail table schema.

Detail Tables Aggregate Tables
Qtr_Store_Sales Period_Qtr
Store
qtrkey qtr
Market storekey d storekey " year
mktkey mktkey dollars :
hq_city store_type
hg_state store_name
district street
region city
state
— zip — |

v

create star index sales_qtr_star

on qtr_store_sales
STAR Index (gtrkey, storekey);

The generated SQL presented in “Case 3—Optimizing Query Rewrites with
Derived Dimensions” on page 4-11 further illustrates the benefit of creating
derived dimensions.

Red Brick Vista User’s Guide 3-19

Using the Query Rewrite System
Optimizing Query Rewrites

CREATE TABLE Statements

The CREATE TABLE statements for the two aggregate tables in this example
look like this:

create table period_qtr
(gtr char(6) not null,
year int,

primary key (qtr));

create table qtr_store_sales

(qtrkey char(6) not null,

storekey int not null,

dollars dec(13,2),

primary key (qgtrkey, storekey),

foreign key (qgtrkey) references period_qtr (qtr),
foreign key (storekey) references store (storekey))
maxrows per segment 20000;

Note: Because derived dimensions are referenced tables, you have to create
them before you create the referencing aggregate table.

INSERT Statements

These tables are loaded with the following INSERT statements:

insert into period_qtr
select qtr, year

from period

group by qtr, year;

insert into gtr_store_sales

select qtr, storekey, sum(dollars)
from sales, period

where sales.perkey = period.perkey
group by qtr, storekey;

Note that the INSERT statement for the Period_Qtr table contains no
aggregation column, just two grouping columns. Instead of calculating sums
or other aggregations, the query expression selects distinct combinations of Qtr
and Year values.

3-20 Red Brick Vista User’s Guide

Using the Query Rewrite System
Optimizing Query Rewrites

Precomputed View Definition

The query expression in the precomputed view for the derived dimension
table must match the query expression in the INSERT statement that loaded the
table:

create view pd_qtr_view as
select qtr, year
from period
group by qtr, year
using period_qtr (qtr, year);

Note: This kind of precomputed view must be defined with a GROUP BY
clause. The following equivalent query expression, which uses the
DISTINCT function in the select list, will return a syntax error despite the
fact that it computes the same result set.

create view pd_qtr_view as
select distinct qtr, year
from period

using period_qtr (gtr, year);

* ERROR ** (1901) The query expression for the precomputed
view is invalid.

In general, the same syntax rules apply to all precomputed views, whether
their linked aggregate tables are derived dimensions, referencing (fact) tables,
or stand-alone tables that have no relationship to other tables in the database
schema. For complete syntax information, refer to the SQL Reference Guide.

Red Brick Vista User’s Guide 3-21

Using the Query Rewrite System
Optimizing Query Rewrites

The following diagram illustrates the view definition for the Period_Qtr table:

Period
perkey

date

. day
Detail | \yeek

Table month
qtr
year

Pd_Qtr_View

create vie\/v pd_gtr_view as
select qgtr, year

from period Precomputed
group by qtr, year View

using period_qgtr (qtr, year);

|

Period_Qtr
qtr .
year Derived
. Dimension

Creating Indexes

In general terms, query rewriting guarantees accelerated query performance
when indexes equivalent to those defined on the detail tables are defined on the
aggregate tables. In other words, the Red Brick Vista option should be used in
conjunction with standard Red Brick Warehouse performance and tuning
technigues—especially STARjoin and TARGETjoin query processing. Indexes
are particularly important when families of aggregate tables are used, as
explained previously in the discussion of derived dimensions.

Before using the query rewrite system, compare the aggregate tables you have
created to their corresponding detail tables and create the following types of
indexes on equivalent columns:

= B-TREE indexes
= STAR indexes
= TARGET indexes, including those intended for TARGETjoin processing.

For general indexing instructions, refer to the Warehouse Administrator’s Guide.

3-22 Red Brick Vista User’s Guide

Using the Query Rewrite System
Setting Up the Query-Rewriting Environment

Setting Up the Query-Rewriting Environment

Before you can use the query rewrite system to rewrite aggregate queries,
complete the following configuration tasks.

For more information about the SET commands and configuration parameters
discussed here, refer to the SQL Reference Guide and the Warehouse
Administrator’s Guide.

Marking Precomputed Views Valid

When a precomputed view is created, it defaults to an invalid state, and its
associated aggregate table will not be used to rewrite queries until you have
marked the view valid.

You can mark a precomputed view valid in two ways:
= By marking the view itself valid. For example:
set precomputed view store_sales_view valid;

where store_sales_view is the name of the precomputed view.

= By marking all the views associated with a given detail table valid. For
example:

set precomputed views for sales valid;

where sales is the detail table, not the aggregate table.

These commands can also be used to mark views invalid.

Using Invalid Views
The following command makes all the invalid views in the database available
to the query rewrite system:

set use invalid precomputed views on;

This command should be used with caution; its purpose is to provide an
administrator’s shortcut that allows all of the existing precomputed views in
the database to be considered for query rewrites, regardless of the validity of
the data in the tables they reference.

The following warning message is displayed when an invalid view is used to
rewrite a query:

* WARNING ** (1928) Query was executed using one or more invalid
precomputed views.

Red Brick Vista User’s Guide 3-23

Using the Query Rewrite System
Setting Up the Query-Rewriting Environment

3-24

The following command invalidates the data for all views associated with
detail tables that are updated after the view is created:

set auto invalidate precomputed views on;

This command, and its corresponding configuration parameter, is the
warehouse administrator’s mechanism for ensuring that invalid views are
unavailable to the query rewrite system as soon as the data stored in associated
detail tables changes.

For example, assume that the SET AUTO INVALIDATE... command is set to ON.
The administrator populates the Store_Sales aggregate table with an INSERT
statement that selects from the Sales table; creates the Store_Sales_View, using
the same query expression as the INSERT statement; and marks the view valid.
If some rows in the Sales table are subsequently updated, the precomputed
view will be marked invalid and will not be used by the query rewrite system.

Turning On the Query Rewrite System

Turn on the query rewrite system by using the following SET command or its
equivalent configuration parameter:

set precomputed view query rewrite on;
The default behavior of the warehouse server is to rewrite queries. If you do

not want queries to be rewritten, you must set this command (or the
configuration parameter) to OFF.

Generating Statistics

Generate detailed statistics for queries by using the SET STATS INFO command
and note the performance gain when queries are rewritten. When a query is
rewritten, the following message is displayed:

** INFORMATION ** (1461) SQL statement was rewritten to use one or
more precomputed views.

Use the EXPLAIN command to capture more detailed information about the
execution of rewritten queries. See page 4-21 for an example of the EXPLAIN
output.

Red Brick Vista User’s Guide

Using the Query Rewrite System
Setting Up the Query-Rewriting Environment

Querying the RBW_VIEWS System Table

To get detailed information about precomputed views and their associated
aggregate tables and detail tables, the administrator can query the RBW_VIEWS
system table.

Note: Aggregate tables and precomputed views are not distinguished from
detail tables (base tables) and regular views in the Type column of the
RBW_TABLES system table; they are marked TABLE and VIEW,
respectively.

Examples
The following query lists all the aggregate tables that are associated with
precomputed views, then identifies the detail table for each aggregate table:

select name as view_name,
precompview_table as aggregate_table,

detail_table
from rbw_views
order by 3;
VIEW_NAME AGGREGATE_TABLE DETAIL_TABLE
PERIOD_QTR_VIEW PERIOD_QTR PERIOD

STORE_SALES_VIEW STORE_SALES SALES
SALES_RANK_VIEW SALES_CONSTANT SALES

In this context, the detail table is the referencing table named in the FROM clause
of the view definition (or the detail dimension table in the case of a derived
dimension).

The following query lists all the valid precomputed views. Regular views
contain NULLs in the Valid column of the RBW_VIEWS table; precomputed
views are marked Y or N.

select name from rbw_views where valid = 'Y";

NAME

PERIOD_QTR_VIEW
QTR_STORE_SALES2_VIEW
QTR_STORE_SALES1_VIEW
STORE_SALES_VIEW

For information about marking views valid and invalid, refer to page 3-23.

Red Brick Vista User’s Guide 3-25

Using the Query Rewrite System
Setting Up the Query-Rewriting Environment

The following query lists the precomputed views associated with the Sales
table:

select name, precompview_table
from rbw_views
where detail_table = 'SALES';

NAME PRECOMPVIEW_TABLE
QTR_STORE_SALES2_VIEW QTR_STORE_SALES2

QTR_STORE_SALES1 VIEW QTR_STORE_SALES1
STORE_SALES_VIEW STORE_SALES

For detailed information about the contents of view-related system tables, refer
to the Warehouse Administrator’s Guide.

3-26 Red Brick Vista User’s Guide

Using the Query Rewrite System
Setting Up the Query-Rewriting Environment

Making Precomputed Views Invisible to Client Tools

When ODBC client applications are used to query a Red Brick Warehouse
database, the Red Brick ODBC Driver first queries a view of the RBW_TABLES
system table, called RBW_TABLES_VIEW, not the system table itself. If the view
does not exist, the driver queries RBW_TABLES.

This behavior is a mechanism for customizing the list of tables and views
visible to users of client tools. To make aggregate tables (that is, tables
associated with precomputed views) invisible to client tools, define a view
named RBW_TABLES_VIEW as follows:

create view RBW_TABLES_VIEW as
select * from rbw_tables
where rbw_tables.name not in
(select rbw_views.precompview_table
from rbw_views
where rbw_views.precompview_table is not null);

To make both aggregate tables and their precomputed views invisible, define
the view like this:

create view RBW_TABLES_VIEW as
select * from rbw_tables
where rbw_tables.name not in
(select rbw_views.precompview_table
from rbw_views
where rbw_views.precompview_table is not null)
and rbw_tables.name not in
(select rbw_views.name
from rbw_views
where rbw_views.precompview_table is not null);

This procedure is recommended because the query rewrite system rewrites
gueries that users submit against detail tables. Users are not intended to query
precomputed views and their aggregate tables directly.

Note: This procedure works only with client tools that use the ODBC function
SQLTables() to query the RBW_TABLES system table.

Red Brick Vista User’s Guide 3-27

Using the Query Rewrite System
Checklist of Query-Rewriting Tasks

Checklist of Query-Rewriting Tasks

To use the query rewrite system:

Action

Page

1. Enable the Red Brick Vista option with a license
key.

2. Create and populate aggregate tables:

— Use the CREATE TABLE command to create the
tables.

— Use the INSERT command or Table
Management Utility (TMU) LOAD DATA
operations to populate the tables.

3. Create precomputed views with the
CREATE VIEW...USING command.

4, Declare functional dependencies by using the
CREATE HIERARCHY command.

5. Optimize query-rewriting performance by:
— Creating derived dimensions.
— Creating indexes on aggregate tables.
6. Set up the query-rewriting environment:
— Mark precomputed views valid.
— Turn on the query rewrite system.
— Generate statistics for rewritten queries.

3-28 Red Brick Vista User’s Guide

Note: Refer to the
Installation and
Configuration
Guide for details.

3-2

3-11

3-17

3-23

/

Query Rewrite Case Studies

This section presents several examples of query rewriting. Each case study
begins by presenting either a specific query or a type of query routinely
submitted by users, then shows how to use the query rewrite system to
accelerate query performance. Performance statistics can be compared by
using the SET STATS INFO command and turning the query rewrite system on
and off before running each query.

This chapter is divided into the following sections:

= General Instructions

= Case 1—Rewriting a STARjoin Query

e Case 2—Making Use of Explicit Hierarchies

= Case 3—Optimizing Query Rewrites with Derived Dimensions
= Case 4—Using Implicit Hierarchies to Rewrite Queries

e Case 5—Rewriting Subqueries

= Case 6—Rewriting a Query That Calculates Averages

Red Brick Vista User’s Guide 4-1

Query Rewrite Case Studies
General Instructions

General Instructions

Each case in this chapter is presented as a tutorial that you can work through
by using the RISQL Entry Tool to connect to the sample Aroma database. The
following general steps apply to all the cases:

1.

Start by setting up the database—by creating aggregate tables,
precomputed views, indexes, and hierarchies. (Use the EDIT command to
create and save your DDL files.)

2. Populate the aggregate tables by using INSERT statements.

Mark the precomputed views as valid by using one of the following SET
commands:

set precomputed view view_name valid;
set precomputed views for detail_table valid;
Generate detailed statistics for queries:

set stats info;

The output of this command indicates whether the queries you submit have
been rewritten. (To get more information about the tables and indexes used
to rewrite queries, use the EXPLAIN command.)

Run some queries with the query rewrite system turned on:

set precomputed view query rewrite on;

Run the same queries with the query rewrite system turned off and
compare the performance:

set precomputed view query rewrite off;

Troubleshooting

If an expected query rewrite does not occur, check the following:

Is the query rewrite system turned on?
Are the precomputed views marked valid?

Does the query constrain on a column “unknown” to the view? (For an
example, see page 4-7.)

Does the query fall into one of the classes of queries that cannot be
rewritten? (See page 3-9.)

4-2 Red Brick Vista User’s Guide

Query Rewrite Case Studies
Case 1—Rewriting a STARjoin Query

Case 1—Rewriting a STARjoin Query

The first example demonstrates the simplest case in which query rewriting
improves query performance—that is, when the aggregate table contains the
exact result set requested by the query. The only database objects the DBA
must create are a precomputed view and its associated aggregate table.

The Query

The following query returns quarterly sales figures for each store in the Store
table.

select store_name, qtr, sum(dollars) as total_sales
from sales, period, store
where sales.perkey = period.perkey
and sales.storekey = store.storekey
group by store_name, qtr;

To answer this query, the server joins three tables over the STARindex built on
the detail Sales table. The results are returned in a matter of seconds, but since
this kind of report is requested routinely by several users, the administrator
wants to obtain the result set even faster.

The administrator precomputes the results into an aggregate table. Using the
guery rewrite system, the administrator can do this without requesting that the
users query the new table. Their view of the database need not change, and the
guery they submit will be exactly the same.

The following steps show how to make this performance improvement
possible.

Step 1—Create the Aggregate Table

Issue a standard CREATE TABLE statement to create an aggregate table that
contains three columns equivalent to the columns in the query’s select list:

create table quarterly_store_sales
(store_name char(30),

qtr char(b),

dollars dec(13,2));

Red Brick Vista User’s Guide 4-3

Query Rewrite Case Studies
Case 1—Rewriting a STARjoin Query

Step 2—Populate the Aggregate Table

Issue an INSERT INTO...SELECT statement to load the aggregate table:

insert into quarterly_store_sales (store_name, qtr, dollars)
select store_name, qgtr, sum(dollars) as dollars
from sales, period, store
where sales.perkey = period.perkey
and sales.storekey = store.storekey
group by store_name, qtr;

Step 3—Create the Precomputed View

Issue a CREATE VIEW statement with a USING clause to create a precomputed
view associated with the aggregate table:

create view quarterly_store_sales_view as
select store_name, qtr, sum(dollars) as dollars
from sales, period, store
where sales.perkey = period.perkey
and sales.storekey = store.storekey
group by store_name, qtr
using quarterly_store_sales (store_name, qtr, dollars);

Note: The query expression defined in the view must match the query
expression defined in the INSERT statement.

Step 4—Mark the Precomputed View Valid
Make the precomputed view available to the query rewrite system by using
one of the following SET commands:
set precomputed views for sales valid;

set precomputed view quarterly_store_sales_view valid;

The first command marks all views that use the Sales table as the source of their
detail data valid; the second marks only the Quarterly _Store Sales_View valid.

Step 5—Submit the Query and Note the Performance Gain

Run the query with the query rewrite system turned on and use the SET STATS
INFO command to capture performance statistics and verify that the query is
being rewritten. Note the considerable performance gain when the query is
rewritten versus when the query rewrite system is turned off.

4-4 Red Brick Vista User’s Guide

Query Rewrite Case Studies
Case 1—Rewriting a STARjoin Query

The query rewrite system intercepts the user’s SQL and substitutes a fast scan
of the small aggregate table for the three-table STARjoin normally executed. In
this case, the rewritten query is the equivalent of issuing a SELECT * on the
aggregate table; however, users do not need to know that the aggregate table
exists, and this table can be used to silently rewrite other queries as well.

select store_name, qtr, sum(dollars) as total_sales
from sales, period, store
where sales.perkey = period.perkey
and sales.storekey = store.storekey
group by store_name, qtr;

** STATISTICS ** (500) Compilation = 00:00:00.22 cp time,
00:00:00.21 time, Logical 10 count=156

STORE_NAME QTR TOTAL_SALES
Roasters, Los Gatos Q1 94 43011.50

San Jose Roasting Company Q1 94 55763.25
Cupertino Coffee Supply Q1_94 44280.75

Beans of Boston Q1 96 46797.25
Olympic Coffee Company Q1_96 54868.50
Coffee Connection Q1_96 31697.00

** INFORMATION ** (1461) SQL statement was rewritten to use one
or more precomputed views.

** STATISTICS ** (500) Time = 00:00:00.02 cp time, 00:00:00.02 time,
Logical 10 count=164

** INFORMATION ** (256) 156 rows returned.

Step 6—Experiment with Other Query Rewrites

Variations on the original query can also be rewritten using the same
precomputed view.

Variation 1—Add an ORDER BY Clause

select store_name, qtr, sum(dollars) as total_sales
from sales, period, store
where sales.perkey = period.perkey
and sales.storekey = store.storekey
group by store_name, gtr
order by total_sales desc;

STORE_NAME QTR TOTAL_SALES
Miami Espresso Q2 95 61974.40

San Jose Roasting Company Q2 95 60340.70
Olympic Coffee Company Q3 95 60070.50
Olympic Coffee Company Q4_95 59998.60
Beaches Brew Q2_95 59505.75

Red Brick Vista User’s Guide 4-5

Query Rewrite Case Studies
Case 1—Rewriting a STARjoin Query

This query can be rewritten to use the same table scan as the original query.
The ORDER BY clause does not compute a different result set, just the same
result set sorted and displayed in the specified order.

Variation 2—Group the Result Set by Fewer Columns

The following query returns the quarterly sales figures for all stores. The
results are grouped by one column only—the Qtr column from the Period
table. (This query also retains the ORDER BY clause introduced in the previous
example.)

select qtr, sum(dollars) as total_sales
from sales, period

where sales.perkey = period.perkey
group by qtr

order by total_sales desc;

QTR TOTAL_SALES
Q2_95 837699.75
Q4_95 822765.35
Q3 95 822268.35
Q1 96 807390.40
Q1 95 797257.60
Q4_94 782359.05
Q3_94 778795.20
Q2_94 756282.05
Q1 94 723532.35

In this case, the query rewrite system must do some GROUP BY processing to
roll up the precomputed result set defined by the view (156 rows) to 9
rows—one row per quarter. However, no join of the Sales and Period tables is
required; the result set can be calculated directly from the data in the aggregate
table.

Variation 3—Add a Predicate to the WHERE Clause

select gtr, sum(dollars) as total_sales

from sales, period

where sales.perkey = period.perkey
and qtr like '%95%'

group by qtr

order by total_sales desc;

QTR TOTAL_SALES
Q2_95 837699.75
Q4_95 822765.35
Q3 95 822268.35
Q1 95 797257.60

4-6 Red Brick Vista User’s Guide

Query Rewrite Case Studies
Case 1—Rewriting a STARjoin Query

Because the WHERE clause predicate is on one of the grouping columns used to
define the contents of the aggregate table, the query can be rewritten to use the
aggregate table instead of the Sales and Period tables.

Variation 4—Add a RISQL Display Function and a WHEN
Clause

This variation removes the WHERE clause predicate introduced in the previous
example and adds an expression in the select list that uses the RANK display
function. The results of the RANK function are constrained by the WHEN clause
to return only the top three quarters.

select qtr, sum(dollars) as total_sales
rank(total_sales) as sales_rank

from sales, period

where sales.perkey = period.perkey

group by qtr

when sales_rank <=3

order by total_sales desc;

QTR DOLLARS SALES_RANK
Q2_95 837699.75 1
Q4_95 822765.35 2
Q3 95 822268.35 3

Variation 5—Add Constraints on “Unknown” Columns

This variation is a “negative test.” The following queries cannot be rewritten to
use the precomputed view for the Quarterly_Store_Sales table because they
refer to columns not defined by the view. These “unknown” columns are
shown in bold:

select month, gtr, sum(dollars) as total_sales
from sales, period, store
where sales.perkey = period.perkey
and sales.storekey = store.storekey
group by month, gtr;

select store_name, store_type , sum(dollars) as total_sales
from sales, period, store
where sales.perkey = period.perkey
and sales.storekey = store.storekey
group by store_name, store_type ;

select store_name, qtr, sum(dollars) as total_sales
from sales, period, store
where sales.perkey = period.perkey
and sales.storekey = store.storekey
and store_type = 'Large’
group by store_name, qtr;

Red Brick Vista User’s Guide 4-7

Query Rewrite Case Studies
Case 2—Making Use of Explicit Hierarchies

Case 2—Making Use of Explicit Hierarchies

Case 1 presented a simple example of query rewriting in which minor
variations in the original query could be handled by the same aggregate table
and view. The following example demonstrates the case where the existence of
a functional dependency extends the range of queries that a single aggregate
table can be used to rewrite.

When the precomputed view is grouped by non-key columns (such as
Store_Name and Qtr, as in Case 1), but the user’s query constrains on a column
of coarser granularity than one of the grouping columns, the query rewrite
system makes use of functional dependencies between the grouping column in
the view and the column specified in the query. However, unless these
dependencies have been declared as explicit hierarchies, the query rewrite
system is not aware of them and the query cannot be rewritten.

The Query

Except for the substitution of the Year column for the Qtr column, the kind of
guery the administrator wants to rewrite is the same as the original query for
Case 1 (see page 4-3).

select store_name, year , sum(dollars) as total_sales

from sales, period, store

where sales.perkey = period.perkey

and sales.storekey = store.storekey
group by store_name, year ;

Step 1—Create the Aggregate Table and Precomputed View

Create and load the aggregate table and create the precomputed view
(grouped by the Store_Name and Qtr columns) as described in Case 1 on
page 4-3.

Step 2—Create the Hierarchy

Declare that a functional dependency exists between the Qtr and Year columns
in the detail Period table.

create hierarchy qgtr_year
(from period(qtr) to period(year));

Ensure that the precomputed view is marked valid, then turn on the query
rewrite system and run the query.

4-8 Red Brick Vista User’s Guide

Query Rewrite Case Studies
Case 2—Making Use of Explicit Hierarchies

Step 3—Create Additional Hierarchies

Create some additional hierarchies to extend the range of query rewrites
possible with the Quarterly_Store_Sales aggregate table. For example, create
the following hierarchy, which defines two legal relationships:

create hierarchy store_region
(from store(store_name) to store(city),
from store (city) to market (district));

Now many more queries become candidates for query rewriting. Specifically,
gueries that group by any combination of the following columns can be
rewritten:

< Period table: Qtr and Year columns
= Store table: Store_ Name and City columns
= Market table (an outboard table referenced by the Store table): All columns

All of the Market table columns can be constrained because the hierarchy from
Store.City to Market.District is internally defined as Store.City to Store.Mktkey
(see page 3-12). Therefore, using the primary-key/foreign-key relationship
between the Store and Market tables, rollups are possible from Store.City to
any column in the Market table.

Step 4—Experiment with Other Query Rewrites

For example, all of the following queries can be rewritten:
= Sales per city per quarter:

select city , quarter, sum(dollars) as total_sales
from sales, period, store
where sales.perkey = period.perkey
and sales.storekey = store.storekey
group by city , quarter;

= Sales per store for the Southern region:

select store_name, sum(dollars) as total_sales
from sales, period, store, market
where sales.perkey = period.perkey

and sales.storekey = store.storekey

and market.mktkey = store.mktkey

and market.region = 'South'
group by store_name
order by total_sales desc;

Red Brick Vista User’s Guide 4-9

Query Rewrite Case Studies
Case 2—Making Use of Explicit Hierarchies

Sales per district per quarter:

select district, gtr, sum(dollars) as total_sales
from sales, period, store, market
where sales.perkey = period.perkey
and sales.storekey = store.storekey
and store.mktkey = market.mktkey
group by district, gtr;

Sales per district per year:

select district, year, sum(dollars) as dollars
from sales, period, store, market

Sales per region per quarter:

select region, qtr, sum(dollars) as dollars
from sales, period, store, market

Sales per region per year:

select region , year, sum(dollars) as dollars
from sales, period, store, market

4-10 Red Brick Vista User’s Guide

Query Rewrite Case Studies
Case 3—Optimizing Query Rewrites with Derived Dimensions

Case 3—Optimizing Query Rewrites with Derived
Dimensions

Case 2 showed how declared functional dependencies extend the range of
guery rewriting that can be done with a single precomputed view. However, to
ensure that the types of queries rewritten in Case 2 achieve optimal rewriting
performance, the administrator should create derived dimension tables, as
explained in the following example.

The Queries

The following queries will be rewritten using explicit hierarchies and a
precomputed view grouped by non-key columns; therefore, they both require
derived dimensions to ensure optimal performance.

The first query is the same as the query presented at the beginning of Case 2; it
requires a derived dimension on the Period table:

select store_name, year , sum(dollars) as total_sales
from sales, period, store
where sales.perkey = period.perkey
and sales.storekey = store.storekey
group by store_name, year;

The second query requires derived dimensions on the Period table and Store
tables:

select city , year ,sum(dollars) as total_sales
from sales, period, store
where sales.perkey = period.perkey
and sales.storekey = store.storekey
group by city, year,

Step 1—Create the Aggregate Tables

Issue CREATE TABLE statements to create derived dimensions and an aggregate
table that references them. Because the derived dimensions are the referenced tables,

create them first.

Red Brick Vista User’s Guide 4-11

Query Rewrite Case Studies
Case 3—Optimizing Query Rewrites with Derived Dimensions

Derived Dimension for the Period Table

create table period_qtr
(qtr char(5) not null,
year int,

primary key (qtr))
maxrows per segment 1000;

Note: The Qtr column is the primary key of the derived dimension.

Derived Dimension for the Store Table

create table derived_store (

store_name char(30) not null,

city char(20),

state char(5),

zip char(10),

mktkey integer not null,

primary key (store_name),

foreign key (mktkey) references market (mktkey))
maxrows per segment 2000;

Note: The foreign-key/primary-key relationship between the Store table and
the outboard Market table is retained in the derived Store dimension.

Aggregate Fact Table

create table derived_quarterly_store_sales

(storekey char(30) not null,

gtrkey char(5) not null,

dollars dec(13,2),

primary key (storekey, qtrkey),

foreign key (qgtrkey) references period_qtr (qtr),

foreign key (storekey) references derived_store (store_name))
maxrows per segment 2000;

Note: The foreign keys reference the two derived dimensions. Although the
same aggregate data is used in this example as in Cases 1 and 2, this
version of the aggregate fact table must reference the derived
dimensions instead of the detail Store and Period dimensions.

4-12 Red Brick Vista User’s Guide

Query Rewrite Case Studies
Case 3—Optimizing Query Rewrites with Derived Dimensions

Step 2—Load the Aggregate Tables

Derived Dimensions

insert into period_qtr
select qtr, year from period
group by qgtr, year;

insert into derived_store

select store_name, city, state, zip, mktkey
from store

group by store_name, city, state, zip, mktkey;

Note: Although SELECT DISTINCT queries would insert the same set of rows
into these tables as the GROUP BY queries used here, the SELECT
DISTINCT approach cannot be used because such query expressions are
not allowed in precomputed view definitions.

Aggregate Fact Table

insert into derived_quarterly_store_sales
(storekey, gtrkey, dollars)
select store_name, qtr, sum(dollars) as dollars
from sales, period, store
where sales.perkey = period.perkey
and sales.storekey = store.storekey
group by store_name, qtr;

Step 3—Create the Precomputed Views

Derived dimensions are by definition aggregate tables; they must be linked to
precomputed views.

Derived Dimensions

create view period_qtr_view as
select gtr, year from period
group by qtr, year

using period_qtr (gtr, year);

create view derived_store_view as
select store_name, city, state, zip, mktkey
from store
group by store_name, city, state, zip, mktkey
using derived_store (store_name, city, state, zip, mktkey);

Red Brick Vista User’s Guide 4-13

Query Rewrite Case Studies
Case 3—Optimizing Query Rewrites with Derived Dimensions

Aggregate Fact Table

create view derived_quarterly_store_sales_view as
select store_name, qtr, sum(dollars) as dollars
from sales, period, store
where sales.perkey = period.perkey
and sales.storekey = store.storekey
group by store_name, qtr
using derived_quarterly_store_sales (storekey, gtrkey, dollars);

Step 4—Create a STAR index on the Aggregate Fact Table

Create a STAR index on the foreign-key columns (Qtrkey and Storekey) of the
Derived_Quarterly_Store_Sales table.

create star index derived_quarterly_store_sales_star
on derived_quarterly_store_sales (qgtrkey, storekey);

This STARiIndex is the equivalent of the STARindex used to join the Sales table
to the Period and Store dimensions. The new index will make it possible to
STARjoin the Derived_Quarterly Store_Sales, Period_Qtr, and Derived_Store
tables.

Step 5—Create Explicit Hierarchies

Define the same set of hierarchies that were created in Step 4 for Case 2 (see
page 4-8).

These functional dependencies must be declared before the aggregate table
family can be used to rewrite queries that group by the Year column of the
Period table and/or the City column of the Store table.

Step 6—Validate the Precomputed View

Mark the precomputed view valid by issuing the following SET commands:

set precomputed view derived_quarterly_store_sales_view valid,;
set precomputed view period_qtr_view valid;
set precomputed view derived_store_view valid;

Note: Be sure to mark all three views valid (one for each table in the aggregate
table family).

Now turn on the query rewrite system and note the performance gain when
you run the queries on page 4-11.

4-14 Red Brick Vista User’s Guide

Query Rewrite Case Studies
Case 3—Optimizing Query Rewrites with Derived Dimensions

Step 7—Note the Simplified SQL

Derived dimensions optimize query-rewriting performance by eliminating
some extra GROUP BY processing in the generated SQL. Compare the following
query rewrites for the same query.

The first rewrite lacks a derived dimension; therefore, a subquery in the FROM
clause (shown in bold) must group the Qtr and Year values from the detail
Period table. The results of this subquery are then joined to the aggregate table.
The second rewrite uses a simple join to the Period_Qtr derived dimension, in
which the grouped Qtr and Year values are precomputed.

For more information about performance gains with derived dimensions, refer
to “Simplified SQL Generation” on page 3-18.

Query

select store_name, year, sum(dollars) as total_sales
from sales, period, store
where sales.perkey = period.perkey
and sales.storekey = store.storekey
group by store_name, year
order by total_sales desc;

Generated SQL—Without a Derived Dimension

SELECT TABLE_2.STORE_NAME AS RBW_2, TABLE_1.COL2 AS RBW_3,
SUM(TABLE_2.DOLLARS) AS RBW_4

FROM
(SELECT TABLE_0.QTR AS RBW_0, TABLE_0.YEAR AS RBW_1
FROM PERIOD AS TABLE_0
GROUP BY TABLE_0.QTR, TABLE_0.YEAR) AS TABLE_1(COL1, COL2),
QTR_STORE_SALES1 AS TABLE_2

WHERE TABLE_2.QTR = TABLE_1.COL1

GROUP BY TABLE_2.STORE_NAME, RBW_3

ORDER BY 3 DESC NULL FIRST;

Generated SQL—With a Derived Dimension

SELECT TABLE_0.STORE_NAME AS RBW_0, TABLE_1.YEAR AS RBW 1,
SUM(TABLE_0.DOLLARS) AS RBW._2

FROM QTR_STORE_SALES1 AS TABLE_0, PERIOD_QTR AS TABLE_1

WHERE TABLE_0.QTR = TABLE_1.QTR

GROUP BY TABLE_0.STORE_NAME, TABLE_1.YEAR

ORDER BY 3 DESC NULL FIRST;

Red Brick Vista User’s Guide 4-15

Query Rewrite Case Studies
Case 4—Using Implicit Hierarchies to Rewrite Queries

Case 4—Using Implicit Hierarchies to Rewrite Queries

Cases 1, 2, and 3 use aggregate data grouped by non-key columns. These
aggregate tables perform very well for specific queries or groups of similar
gueries. The following example takes a different approach to query rewriting
by showing the case where the administrator groups the aggregate data by
foreign-key columns.

This approach is simpler—no hierarchies need be declared or derived
dimensions defined, and a broad range of queries can be rewritten with the
same aggregate table. However, aggregate tables of this kind are usually larger
than aggregate tables grouped by non-key columns. As a result, query rewrites
will improve performance but often not as much as they would if the aggregate
table were grouped by specific columns.

The following example demonstrates a case where a group of users run various
gueries that constrain on two dimension tables—Period and Store—to
calculate sales revenues over different periods of time and in different
locations. This case also demonstrates the ability to rewrite queries that
reference columns in an outboard table (the Market table), even though those
columns are not explicitly defined in the precomputed view.

The Queries
= Sales per day for a given week:

select day, sum(dollars) as total_sales
from sales, period
where sales.perkey = period.perkey
and week = 13
and year = 1996
group by day
order by sales.perkey;

= Sales for each store on each day of a given month:

select date, store_name, sum(dollars) as total_sales
from sales, period, store
where sales.perkey = period.perkey
and sales.storekey = store.storekey
and month = 'MAR'
and year = 1996
group by date, store_name
order by sales.perkey;

4-16 Red Brick Vista User’s Guide

Query Rewrite Case Studies
Case 4—Using Implicit Hierarchies to Rewrite Queries

= Sales for each store type for a given month:

select store_type, month, sum(dollars) as total_sales
from sales, store, period
where sales.storekey = store.storekey
and sales.perkey = period.perkey
and month = 'MAR' and year = 1996
group by store_name, month
order by total_sales desc;

= Sales per city per month:

select city, month, sum(dollars) as total_sales
from sales, store, period

= Sales per district per year:

select district, year, sum(dollars) as total_sales
from sales, store, period, market

To answer all these queries, the server would normally join the tables by using
the STAR index on the Sales table. The query rewrite system will substitute the
aggregate fact table and its STAR index. Because the aggregate fact table is
smaller, all the rewritten STARjoin queries will run faster.

Step 1—Create the Aggregate Table

Issue a standard CREATE TABLE statement to create an aggregate table that
contains three columns—Perkey, Storekey, and Dollars:

create table store_sales

(perkey int not null, storekey int not null, dollars dec(13,2),
primary key (perkey, storekey),

foreign key (perkey) references period (perkey),

foreign key (storekey) references store (storekey))

maxrows per segment 50000;

Note: This aggregate table has foreign-key references to the detail Period and
Store tables. The two foreign keys make up the primary key.

Red Brick Vista User’s Guide 4-17

Query Rewrite Case Studies
Case 4—Using Implicit Hierarchies to Rewrite Queries

Step 2—Populate the Aggregate Table

Issue an INSERT INTO...SELECT statement to load the aggregate table:

insert into store_sales

select perkey, storekey, sum(dollars)
from sales

group by perkey, storekey;

Step 3—Create a STAR Index for the Aggregate Table

Create a STAR index on the key columns of the Store_Sales table:

create star index store_sales_star
on store_sales (perkey, storekey);

Note: When the Store_Sales table is used instead of the Sales table in a
rewritten query that requires a join to the Period and Store tables, this
STAR index will be used instead of the STAR index on the Sales table.

Step 4—Create the Precomputed View

Create a precomputed view associated with the aggregate table:

create view store_sales_view (perkey, storekey, dollars) as
(select perkey, storekey, sum(dollars)
from sales
group by perkey, storekey)

using store_sales (perkey, storekey, dollars);

Because the key columns Perkey and Storekey are used as grouping columns
in the precomputed view definition, the query rewrite system can rewrite
gueries that constrain on any column in the Period and Store tables. The use of
key columns as grouping columns results in rollups that use implicit
hierarchies—for example, from Perkey to Year in the Period table and from
Storekey to City in the Store table.

4-18 Red Brick Vista User’s Guide

Query Rewrite Case Studies
Case 4—Using Implicit Hierarchies to Rewrite Queries

Step 5—Mark the Precomputed View Valid

Inform the query rewrite system that the precomputed view is valid by using
one of the following SET commands:

set precomputed views for sales valid;

set precomputed view store_sales_view valid;

The first command marks all views that use the Sales table as the source of their
detail data valid; the second marks only the Store_Sales_View valid.

Step 6—Submit the Queries and Note the Performance Gain

Turn on the query rewrite system, and run the queries listed on page 4-16, as
well as any other aggregate query that constrains on columns from the Period,
Store, and Market dimensions.

Red Brick Vista User’s Guide 4-19

Query Rewrite Case Studies
Case 5—Rewriting Subqueries

Case 5—Rewriting Subqueries

The following example shows how a query that contains multiple query
expressions (or query blocks) is rewritten.

This query is a comparison query that contains two subqueries in the FROM
clause. You can use the query rewrite system to accelerate the performance of
other types of subqueries as well, including correlated subqueries.

The Query and Result Set

select salesl.name, sales_g195, sales_q196
from
(select el.store_name, sum(dollars)
from sales, store el, period
where sales.storekey = el.storekey
and sales.perkey = period.perkey
and qtr ='Q1_95%'
group by el.store_name) as salesl(name, sales_q195),
(select e2.store_name, sum(dollars)
from sales, store e2, period
where sales.storekey = e2.storekey
and sales.perkey = period.perkey
and qtr ='Q1_96'
group by e2.store_name) as sales2(name, sales_q196)
where salesl.name = sales2.name
order by sales_q196 desc;

NAME SALES_Q195 SALES_ Q196
San Jose Roasting Company 53188.70 57129.30
Beaches Brew 57152.85 55662.90
Olympic Coffee Company 52544.80 54868.50
Miami Espresso 58498.50 52043.70
East Coast Roast 41007.75 48222.50
Java Judy's 48760.50 48213.25
Cupertino Coffee Supply 48155.50 47686.50
Texas Teahouse 46484.50 47013.00
Beans of Boston 46764.50 46797.25
Moulin Rouge Roasting 46671.25 46143.75
Instant Coffee 42400.50 45642.50
Moroccan Moods 43947.50 43617.75
Coffee Brewers 42531.00 43212.50
Roasters, Los Gatos 40725.50 42045.00
Moon Pennies 30203.00 33933.00
Minnesota Roaster 33992.50 33205.00
Coffee Connection 34605.50 31697.00
The Coffee Club 29623.25 30257.00

4-20 Red Brick Vista User’s Guide

Query Rewrite Case Studies
Case 5—Rewriting Subqueries

Step 1—Create the Aggregate Table and View

This example uses the same aggregate table and precomputed view as Case 1;
follow steps 1 through 4 on page 4-3.

Step 2—Run the Query

Submit the query with the query rewrite system turned on and note the
performance gain.

Step 3—Run the EXPLAIN Command for the Query

Submit the query again, but this time place the EXPLAIN keyword in front of
the SQL statement. The EXPLAIN output describes how the rewritten query is
executed, showing the tables and indexes that are used:

EXPLANATION

[

- EXECUTE (ID: 0) 1 Table locks (table, type):
(QUARTERLY_STORE_SALERead)

--- MERGE SORT (ID: 1) Distinct: FALSE

----- EXCHANGE (ID: 2) Exchange type: Upper Hash 1-1 Match

------- HASH 1-1 MATCH (ID: 3) Join type: InnerJoin;

--------- EXCHANGE (ID: 4) Exchange type: Lower Hash 1-1 Match

----------- HASH AVL AGGR (ID: 5) Log Advisor Info: TRUE, Grouping:
TRUE, Distinct: FALSE;

------------- FUNCTIONAL JOIN (ID: 6) 1 tables: TABLE_O

--------------- BTREE SCAN (ID: 7) Table: TABLE_O, Index:
QUARTERLY_STORE_SALES_PK_IDXReverse order: FALSE; Start-stop
predicate: <none>;Predicate: (TABLE_0.QTR)=('Q1_96")

--------- EXCHANGE (ID: 8) Exchange type: Lower Hash 1-1 Match

----------- HASH AVL AGGR (ID: 9) Log Advisor Info: TRUE, Grouping:
TRUE, Distinct: FALSE;

------------- FUNCTIONAL JOIN (ID: 10) 1 tables: TABLE_2

--------------- BTREE SCAN (ID: 11) Table: TABLE_2, Index:
QUARTERLY_STORE_SALES_PK_IDXReverse order: FALSE; Start-stop
predicate:<none>;Predicate: (TABLE_2.QTR)=('Q1_95")

]
The output reveals that the only table and index used to execute this rewritten

query are the Quarterly_Store_Sales aggregate table and its primary key index.
The names TABLE_0 and TABLE_2 in this output are aliases for the
Quarterly_Store_Sales table that the query rewrite system assigns when it
generates the rewritten SQL for each subquery:.

Red Brick Vista User’s Guide 4-21

Query Rewrite Case Studies
Case 5—Rewriting Subqueries

In other words, the rewritten query still contains subqueries in the FROM
clause, but each subquery has been rewritten as a B-TREE index scan of the
Quarterly_Store_Sales table with the appropriate predicate on the Qtr column.
The only join required is a join of the two intermediate tables that result from
the rewritten subqueries. The three-table joins within the subqueries have been

eliminated.

For more information about the output of the EXPLAIN command, refer to the
Warehouse Administrator’s Guide.

4-22 Red Brick Vista User’s Guide

Query Rewrite Case Studies
Case 6—Rewriting a Query That Calculates Averages

Case 6—Rewriting a Query That Calculates Averages

Although you cannot use the AVG set function in a precomputed view
definition (see page 3-6), queries that calculate averages can be rewritten as
long as a precomputed view exists that stores SUM and COUNT values for the
column to be averaged.

This case presents a very simple example of a rewritten query that contains an
AVG function.

The Query and Result Set

select perkey, int(avg(dollars)) as day_avg
from sales

where perkey between 1 and 31

group by perkey

order by perkey;

PERKEY DAY_AVG
105
93
96
101
115
87
103
100
0 78

POO~NOOTAWN

Step 1—Create the Aggregate Table

Create an aggregate table that contains three columns:

create table sum_count_sales
(perkey int,
sum_sales dec(13,2),
count_sales dec(13,2));

Step 2—Populate the Aggregate Table

Populate the aggregate table with an INSERT INTO...SELECT statement:

insert into sum_count_sales

select perkey, sum(dollars), count(dollars)
from sales

group by perkey;

Red Brick Vista User’s Guide 4-23

Query Rewrite Case Studies
Case 6—Rewriting a Query That Calculates Averages

Step 3—Create the Precomputed View

Create a precomputed view associated with the aggregate table:

create view sum_count_view (perkey, sum_sales, count_sales) as
select perkey, sum(dollars), count(dollars)
from sales
group by perkey

using sum_count_sales (perkey, sum_sales, count_sales);

Step 4—Mark the Precomputed View Valid

Inform the query rewrite system that the precomputed view is valid:

set precomputed view sum_count_view valid;
Step 5—Submit the Queries and Note the Performance Gain

Turn on the query rewrite system and run the query on page 4-23. The query
will be rewritten by using the precomputed SUM and COUNT values in the
Sum_Count_Sales table to calculate the average sales figures.

4-24 Red Brick Vista User’s Guide

5

Using the Advisor

The Red Brick Warehouse Advisor is used to analyze the usefulness of
precomputed views that exist in your database and to suggest new
precomputed views that can increase the query performance of your system.
This chapter contains the following sections:

Advisor Overview

Configuring the Advisor Logging System
Querying the Advisor

Interpreting the Results of Advisor Queries
Understanding the BENEFIT Column
Advisor System Table Column Descriptions
Checklist of Advisor Tasks

Red Brick Vista User’s Guide 5-1

Using the Advisor
Advisor Overview

Advisor Overview

The Advisor—an integral part of the Red Brick Vista option—aids in figuring
out the best aggregate tables for your database, whether those tables currently
exist or not. Since the Advisor knows exactly what types of queries can be
rewritten with the Red Brick Vista query rewriter, it suggests the exact
precomputed views to build in your database. This is a powerful tool in
gaining the best performance from your Red Brick Warehouse database.

There is a cost to every precomputed view, as well as a benefit to having them
exist in your database. The Advisor helps with the cost-benefit analysis of
improving the query performance of your database with precomputed views.

The Advisor provides a facility to log activity of aggregate queries against a
database. From the logged queries, you can analyze two categories: 1) the use
of existing aggregates in the database and 2) evaluate potential new aggregates
to create that, with the query rewriter, can improve query performance.

Analysis of Query Patterns

The goal of the Advisor is to analyze query patterns and see if you have created
the appropriate precomputed views for your database. The longer and more
representative a sample of query patterns that are logged, the more accurate
the results of Advisor queries.

Aadvisor System Tables

You analyze the information in the Advisor log by querying the Advisor
system tables. The Advisor system tables are created with the other system
tables when a database is created. They provide information necessary to
understand the use of existing precomputed views and also guide you in the
creation of new precomputed views. The two Advisor system tables are:

= RBW_PRECOMPVIEW_CANDIDATES Table
= RBW_PRECOMPVIEW_UTILIZATION Table

For descriptions of each column in the Advisor system tables, refer to “Advisor
System Table Column Descriptions” on page 5-24.

5-2 Red Brick Vista User’s Guide

Using the Advisor
Configuring the Advisor Logging System

Advisor Log Files

The Advisor log files store information about the precomputed views in a
database. They are created when logging is started, either at system startup or
manually, depending on the configuration.

The log files store two types of information about precomputed views:
= Information about precomputed views that exist in your database.

= Information about precomputed views that do not exist but would provide
guery-performance benefits if created.

The Advisor analyzes the log files when you query the Advisor system tables,
as explained on page 5-8.

Configuring the Advisor Logging System

There are two steps to configuring your system to log queries for the Advisor:

1. Create the Advisor log file (ADMIN ADVISOR_LOGGING ON or ALTER
SYSTEM START ADVISOR_LOGGING).

2. Enable Advisor query logging (OPTION ADVISOR_LOGGING ON or SET
ADVISOR LOGGING ON).

For the syntax of the various Advisor logging commands, refer to the
SQL Reference Guide. For more information about logging, refer to the
Warehouse Administrator’s Guide.

Creating the Advisor Log Files

If the ADMIN ADVISOR_LOGGING parameter is set to ON in the rbw.config file,
the Advisor log file is created upon system startup. You can also create the log
file manually with the ALTER SYSTEM START ADVISOR_LOGGING command.
The log file is created in the directory specified by the ADMIN
ADVISOR_LOG_DIRECTORY parameter or in the redbrick_dir/logs directory if
that parameter is not specified.

Red Brick Vista User’s Guide 5-3

Using the Advisor
Configuring the Advisor Logging System

Logging Queries

After the Advisor log file is created, you can enable query logging by setting
the OPTION ADVISOR_LOGGING parameter to ON or ON_WITH_CORR_SUB in
the rbw.config file. You can also use the SET ADVISOR LOGGING command to
enable or disable Advisor query logging for a session.

Rewritten Queries

When Advisor query logging is enabled, the Advisor logs all queries that are
rewritten to access data in precomputed views. The purpose of logging these
gueries is to provide data to help you analyze the benefit of your aggregate
tables. When you query the RBW_PRECOMPVIEW_UTILIZATION table, the
guery reads the log files and provides statistics on the actual use during the
time period you specify in the query.

Note: The Advisor logs queries that are rewritten against any valid
precomputed views, including views that are forced into a valid state
with SET PRECOMPUTED VIEW...VALID commands. Similarly, the
Advisor also logs queries rewritten against views that are marked
invalid with SET PRECOMPUTED VIEW...INVALID commands if
USE INVALID PRECOMPUTED VIEWS is set to ON.

Candidate Views

The Advisor also logs views that, if they existed, would have been used for
rewriting queries. These potential views are called candidate views, and can be
seen by querying the RBW_PRECOMPVIEW_CANDIDATES table.

Correlated Subqueries

The ON_WITH_CORR_SUB state of the SET ADVISOR LOGGING command and
OPTION ADVISOR_LOGGING parameter logs correlated subqueries to the
Advisor log files. It is useful to log correlated subqueries because they can be
rewritten by the Red Brick Vista query rewrite system. Correlated subqueries
execute the same query with different values multiple times (potentially a very
large number of repeated queries). Therefore, if such a query can be rewritten,
the performance improvement is multiplied by the number of times the
correlated subquery is executed. If that number is, for example, 1,000,000, that
can be a huge performance boost.

5-4 Red Brick Vista User’s Guide

Using the Advisor
Configuring the Advisor Logging System

In general, it is a good idea to log correlated subqueries. There are, however,
two things to consider when deciding whether to log correlated subqueries:

= Log file size
= Data skew

Log File Size

If correlated subqueries are common in your database, then logging with the
ON_WITH_CORR_SUB state will cause your log file to grow much larger much
faster. This not only takes extra space, but also adds processing time when
guerying the Advisor system tables.

Data Skew

Correlated subqueries can potentially skew your Advisor results because each
subquery of the correlated subquery is logged as a separate
REFERENCE_COUNT, and a correlated subquery executes a separate subquery
for each row in the outer query that is input into the correlated subquery.

Queries That Are Rewritten But Not Logged

When a query is rewritten, a record is sent to the log file. The record is then
used to keep track of which precomputed views have been used and to log
candidate views.

There is, however, a class of queries that could be rewritten if the proper
precomputed view existed, but do not get logged: queries that contain a table
or a subquery that is not related (via a primary key/foreign key relationship)
to the other tables in the query. The following is an example of such a query
from the Aroma database:

set cross join on;

select market.hq_state as hq_state,
sum(sales.dollars) as sum_dollars,
sum_dollars/sum_x.total_sales

from sales, market, store, (select sum(dollars)

from sales) as sum_x(total_sales)

where sales.storekey = store.storekey

and store.mktkey = market.mktkey

and market.hq_state <> 'CA'

group by hg_state, sum_x.total_sales;

Red Brick Vista User’s Guide 5-5

Using the Advisor
Configuring the Advisor Logging System

The subquery in the FROM clause of this query has no primary key/foreign key
relationship with the other tables in the query, so this would not be logged by
the Advisor. If you had a precomputed view defined with the following
CREATE TABLE, INSERT INTO...SELECT, and CREATE VIEW...USING statements,
however, this query could be rewritten to use that precomputed view:

create table simple_table (hq_state char(20),
hqg_city char(20),
year integer,
month character(5),
sum_dollars dec(13,2));

create view simple_view as
(select market.hqg_state as hq_state,
market.hq_city as hqg_city,
period.year as year, period.month as month,
sum(sales.dollars) as sum_dollars
from sales, market, period, store
where sales.perkey = period.perkey
and sales.storekey = store.storekey
and store.mktkey = market.mktkey
group by hqg_city, hqg_state, month, year)
using simple_table (hqg_state, hg_city, year, month, sum_dollars);

insert into simple_table
(hg_state, hq_city, year, month, sum_dollars)

(select market.hq_state as hq_state, market.hg_city as hq_city,
period.year as year, period.month as month,
sum(sales.dollars) as sum_dollars

from sales, market, period, store

where sales.perkey = period.perkey
and sales.storekey = store.storekey
and store.mktkey = market.mktkey

group by hq_city, hq_state, month, year);

set precomputed view simple_view valid;
set precomputed view query rewrite on;

Note: This class of query is only not logged if no precomputed view for it
exists; if the proper precomputed views exist and are valid, the Advisor
logs their use.

5-6 Red Brick Vista User’s Guide

Using the Advisor
Configuring the Advisor Logging System

The following figure shows the relationship of queries that are rewritten and
not rewritten to queries that are logged:

Query

Not rewritten Rewritten

COUI.d be Would never

rewritten be rewritten

if appropriate Non exact Exact match
precomputed match

view existed

Not logged Logged

Logged Not logged*

* Represents the class of queries that could be rewritten
but the candidate views are not logged.

For information on what constitutes an exact match, refer to
“NON_EXACT_MATCH_COUNT Column” on page 5-11.

Setting the ACCESS _ADVISOR_INFO Task Authorization

All users with the DBA system role have the necessary privileges to query the
Advisor system tables. With the Enterprise Control and Coordination option,
you can authorize a user or role to query the Advisor system tables by granting
the ACCESS_ADVISOR_INFO task authorization with the GRANT command.

The following example grants authorization to query the Advisor system
tables to the database user Rieko:

grant access_advisor_info to rieko;

Note: To query the Advisor, you also need read privileges on all tables that are
referenced in the log records for the detail table you are constraining on.

For more information about privileges and role-based security, refer to the
Warehouse Administrator’s Guide.

Red Brick Vista User’s Guide 5-7

Using the Advisor
Querying the Advisor

Defining Valid Hierarchies

It is important to define any valid hierarchies in your schema before you begin
logging queries with the Advisor. This is especially important for the
RBW_PRECOMPVIEW_CANDIDATES table. If hierarchies are defined before you
begin logging, the Advisor can recommend candidate views that take
advantage of these hierarchies. For example, if the Period table has a hierarchy
from the Qtr column to the Year column, the Advisor can recommend views
with the knowledge that queries that can be rewritten with a precomputed
view grouped by Year can also be rewritten with a precomputed view grouped

by Qtr.

For information on hierarchies, refer to “Rollups and Hierarchies” on page 2-6.

Querying the Advisor

To analyze the queries that are logged in the Advisor log files, you submit SQL
gueries against the Advisor system tables. When queries are issued against the
RBW_PRECOMPVIEW_CANDIDATES and RBW_PRECOMPVIEW_UTILIZATION
tables, the Advisor analyzes the information in the log files and collects
statistics on the value of each view or candidate view.

Inserting the Results of an Advisor Query Into a Table

Each Advisor query examines the log files and performs extensive analysis on
the information in them. These queries can take a considerable amount of time
to process, particularly queries of the RBW_PRECOMPVIEW_CANDIDATES
table. If your database is extremely large and if there are a large number of
candidate views, they can take many hours or even days. One way to avoid
doing the processing multiple times is to create a table or a temporary table
and insert the results of a query into the new table. Then you can query the
new table to get the Advisor information.

To insert results of an Advisor query into a table, first you must create the table
or temporary table to insert into and then run an Advisor query with an
INSERT statement.

Note: A temporary table is created with the CREATE TEMPORARY TABLE
command. If you create a temporary table to insert into, the table and its
contents are only accessible in the session in which the temporary table
is created; the temporary table and its contents are automatically
dropped when you end your session. For more information on
temporary tables, refer to the SQL Reference Guide.

5-8 Red Brick Vista User’s Guide

Using the Advisor
Querying the Advisor

Creating and Populating the CANDIDATE_TEMP Table

Use the following procedure to create a table to store the data from a query

against the RBW_PRECOMPVIEW_CANDIDATES Advisor system table, insert
data from the Advisor query into the new table, and query the new table to

view the results of the Advisor query.

1. Create atable that contains all of the columns of the Advisor system table as
in the following example:

create table candidate_temp (
detail_table_name char (128),
start_date timestamp,
end_date timestamp,
aggr_elapsed_time int,
reference_count int,
sample_view_name char (128),
size int,
reduction_factor float,
benefit float,
name char (128),
seq int,
text char (1024)) ;

2. Insert data from an Advisor query into the new table as in the following
example:

insert into candidate_temp

select * from rbw_precompview_candidates

where detail_table_name = 'SALES';
This operation inserts all of the information about candidate views that can
be created on the Sales table into the table Candidate_Temp. This INSERT
operation might take a large amount of time, depending on the size of the
database and the Advisor log files being analyzed.

Red Brick Vista User’s Guide 5-9

Using the Advisor
Querying the Advisor

Creating and Populating the UTILIZATION_TEMP Table

Use the following procedure to create a table to store the data from a query

against the RBW_PRECOMPVIEW_UTILIZATION Advisor system table, insert
data from the Advisor query into the new table, and query the new table to

view the results of the Advisor query.

1. Create atable that contains all of the columns of the Advisor system table as
in the following example:

create table utilization_temp (
detail_table_name char (128),
start_date timestamp,
end_date timestamp,
name char (128),
size int,
reduction_factor float,
benefit float,
non_exact_match_count int,
rollup_count int) ;

2. Insert data from an Advisor query into the new table as in the following
example:

insert into utilization_temp

select * from rbw_precompview_utilization

where detail_table_name = 'SALES',
This operation inserts all of the information about views currently in your
database that reference the Sales table into the table Utilization_Temp.

After the Utilization_Temp table is populated, you can query it to find out how
well your existing views are being used.

Querying the RBW_PRECOMPVIEW_UTILIZATION Table

You query the RBW_PRECOMPVIEW_UTILIZATION table to determine how
often the precomputed views that exist in your database are being used and to
determine the overall benefit they are providing. This section describes some
rules you need to know when querying the table and some details about the
NON_EXACT _MATCH_COUNT column.

For a description of each column in the RBW_PRECOMPVIEW_UTILIZATION
table, refer to page 5-26.

5-10 Red Brick Vista User’s Guide

Using the Advisor
Querying the Advisor

Rules for Querying the RBW_PRECOMPVIEW _UTILIZATION Table

The following rules apply to queries of the RBW_PRECOMPVIEW_UTILIZATION
table:

= The DETAIL_TABLE_NAME column must be constrained to indicate which
table the precomputed views reference. Exactly one detail table must be
specified per query.

= You can (optionally) constrain on the START_DATE and END_DATE columns
to limit the scope of the query to a particular time period.

< No other columns can be constrained.

Note: If you insert the results of an Advisor query into a table like the
Utilization_Temp table shown on page 5-10, there are no restrictions as
to what columns can be constrained on that table; any columns can be
constrained.

NON_EXACT_MATCH_COUNT Column

The NON_EXACT_MATCH_COUNT column tells how many times a view in the
database was used to calculate answers to questions where some additional
aggregation was needed. If the count in this column is high, it suggests that
other precomputed views might help your query performance.

An exact match is when a query is answered by a precomputed view without
performing additional aggregation on the precomputed view. There can still be
some predication on the query (for example, a WHERE clause or HAVING
clause) and there can be some formatting (for example, ORDER BY clause), but
no extra aggregation (for example, GROUP BY, SUM, MIN, MAX). In other
words, an exact match is considered to be some subset of the rows in the
precomputed view.

Example

Assume you have a detail table with a granularity of days, a precomputed
view defined on that table with a granularity of months, and the detail table
and the precomputed view both contain the sum of dollars. If you asked many
guestions about how many dollars were generated for a year, those questions
can be answered by the month table. They can be answered, but not directly; a
further aggregation needs to be computed first. Each time the precomputed
view is accessed to answer a question about the sum of dollars for a year, the
NON_EXACT_MATCH_COUNT column is incremented by one.

If the answer to the question is not an exact match of what is in the
precomputed view, the column is incremented. This includes when additional
aggregation is performed and when a join to another table occurs.

Red Brick Vista User’s Guide 5-11

Using the Advisor
Querying the Advisor

Querying the RBW_PRECOMPVIEW_CANDIDATES Table

You query the RBW_PRECOMPVIEW_CANDIDATES table to help determine
what precomputed views to create in your database. Queries on the table
perform a detailed analysis of the query history stored in your Advisor log files
and the recommendations for candidate views are based on that history.

For a description of each columns in the RBW_PRECOMPVIEW_CANDIDATES
table, refer to page 5-24.

Rules for Querying the RBW_PRECOMPVIEW_CANDIDATES Table

The following rules apply to queries against the
RBW_PRECOMPVIEW_CANDIDATES Advisor system table:

e The DETAIL_TABLE_NAME column must be constrained.

= You can (optionally) constrain on the START_DATE, END_DATE, and
SAMPLE_VIEW_NAME columns.

= No other columns can be constrained.

Note: If you insert the results of an Advisor query into a table like the
Candidate_Temp table shown on page 5-9, there are no restrictions as to
what columns can be constrained on that table; any columns can be
constrained.

SAMPLE_VIEW_NAME Column

The purpose of the sample view is to allow you to perform your Advisor
analysis on a smaller set of data to improve the performance of Advisor
gueries.

When you constrain on the SAMPLE_VIEW_NAME column of the
RBW_PRECOMPVIEW_CANDIDATES table, the scope of the Advisor query is
limited to the view name referenced in the column. A sample view must meet
the following requirements:

= The sample view must map to a subset of the rows in the detail table.

= The sample view must have a column corresponding to each of the columns
in the detail table.

= The datatypes of the columns in the sample view must exactly match those
in the detail table.

5-12 Red Brick Vista User’s Guide

Using the Advisor
Querying the Advisor

Additionally, when creating a sample view, try to create a view that contains a
representative sample of your data. Beware of creating a view that has a highly
skewed sample of your data. This is very database-specific, and the only way
to know if your data is not skewed is to know the data in you database. If your
sample view definition does contain a high degree of data skew, the results
from your Advisor queries will also be skewed, making some views look better
than they really are and others look worse.

In order to constrain on the SAMPLE_VIEW_NAME column, a view must exist
on the detail (base) table. For example:

create view subset_of_detail_table as select * from sales
where perkey between 1 and 100;

Note: This is a regular view, not a precomputed view; there is no USING clause
on the CREATE VIEW statement and there is no precomputed table.

It is possible, however, to create a view that does not perform well. For
example, if you have a 1 billion row detail table and you create a view that
ends up performing a table scan on the 1 billion row table, then performance of
that Advisor query might be poor. In cases like this, you can create a table and
then populate the table with an INSERT statement that inserts a subset of the
data in the detail table, for example, 100,000 rows, into the new table. Then you
create a view on the new table and use that view to constrain on in your
Advisor query.

Whether you create a table with a subset of the rows in the detail table or if you
simply create a view that defines a subset of the rows in the detail table, it is
very important that the table has the appropriate indexes defined on it,
particularly STAR indexes. The Advisor performs many query operations when
analyzing the data in the log files, and proper indexing is essential for good
performance.

Note: When the SAMPLE_VIEW_NAME column is constrained in an Advisor
query, the values in the SIZE and REDUCTION_FACTOR columns are
based on the size of the sample view, not the detail table.

Red Brick Vista User’s Guide 5-13

Using the Advisor
Querying the Advisor

Example of RBW_PRECOMPVIEW_CANDIDATES Query

This example queries the Candidate_Temp table that is described on page 5-9.
You can query the RBW_PRECOMPVIEW_CANDIDATES table directly, but the
processing on it is done for each query. You can use the following query to
inspect the relative value of the candidate views that have been generated for
the detail table Sales:

RISQL> select substr(detail_table_name, 1,10) as TABLE_NAME,
> size, reference_count, benefit

> from candidate_temp

> where detail_table_name = 'SALES";

TABLE_NAME SIZE REFERENCE_C BENEFIT

SALES 13871 2 112140.00
SALES 1450 6 547928.00
SALES 30992 2 77898.00
SALES 66759 2 6364.00
SALES 69941 3 0.00
SALES 69941 1 0.00
SALES 69941 0 0.00
RISQL>

If you want to see the text of the candidate view that would have a size of 1450
rows as seen in the previous Advisor query, enter the following query:

RISQL> select text

> from candidate_temp

> where detail_table_name = 'SALES'
> and size = 1450;

TEXT

SELECT TABLE_2.PERKEY AS RBW_0, TABLE_0.PROMOKEY AS RBW_1,
SUM(TABLE_1.DOLLARS) AS RBW_2 FROM PROMOTION AS TABLE_O,
SALES AS TABLE_1, PERIOD AS TABLE_2

WHERE TABLE_1.PROMOKEY = TABLE_0.PROMOKEY

AND TABLE_1.PERKEY = TABLE_2.PERKEY

GROUP BY TABLE_2.PERKEY, TABLE_0.PROMOKEY;

The table that is represented by this query in the Text column represents the
contents of a precomputed view. If you created the precomputed view with
this information in it, you will speed up the processing of queries that ask for
the sum of dollars by promotion and by time period, as well as speeding up the
processing on queries that ask for a subset of what comprises the precomputed
view.

To create the precomputed view, you must create a table, insert the data into
the table (this becomes the precomputed table), create a precomputed view
using the precomputed table, and then mark the precomputed view valid.

5-14 Red Brick Vista User’s Guide

Using the Advisor
Querying the Advisor

The following steps show how to create, populate, and make available the
precomputed view recommended by the Advisor in this case:

Step 1—Create the Aggregate Table

Issue a CREATE TABLE statement to create the aggregate table:

create table sales_promo_period (
perkey int not null,
promokey int not null,
dollars_sum dec(7,2),
primary key (perkey, promokey),
foreign key (perkey) references period (perkey),
foreign key (promokey) references promotion(promokey));

Step 2—Populate the Aggregate Table

Issue an INSERT INTO...SELECT statement to insert the results of the query the
Advisor identified as a candidate view into the new precomputed table:

insert into sales_promo_period (
SELECT TABLE_2.PERKEY AS RBW_0, TABLE_0.PROMOKEY AS RBW_1,
SUM(TABLE_1.DOLLARS) AS RBW_2
FROMPROMOTIOMS TABLE_0, SALESAS TABLE_1, PERIODAS TABLE_2
WHERE TABLE_1.PROMOKEY = TABLE_0.PROMOKEY
AND TABLE_1.PERKEY = TABLE_2.PERKEY
GROUP BY TABLE_2.PERKEY, TABLE_0.PROMOKEY);

Step 3—Create Any Needed Indexes

At this point, create any indexes on the new table that you need. This is
especially important if the precomputed table is large. For example, create the
following STAR index and drop the primary key B-TREE index that was
automatically created with the table:

create star index sales_promo_period_star
on sales_promo_period (perkey, promokey);

drop index sales_promo_period_pk_idx;

The STAR index now acts as the primary key index.

Red Brick Vista User’s Guide 5-15

Using the Advisor
Querying the Advisor

Step 4—Create the Precomputed View

Issue a CREATE VIEW statement with a USING clause to create a precomputed
view associated with the aggregate table:

create view sales_promo_period_view as (
SELECT TABLE_2.PERKEY AS RBW_0, TABLE_0.PROMOKEY AS RBW_1,
SUM(TABLE_1.DOLLARS) AS RBW_2
FROMPROMOTIOMS TABLE_0, SALESAS TABLE_1, PERIODAS TABLE_2
WHERE TABLE_1.PROMOKEY = TABLE_0.PROMOKEY
AND TABLE_1.PERKEY = TABLE_2.PERKEY
GROUP BY TABLE_2.PERKEY, TABLE_0.PROMOKEY)
using sales_promo_period (perkey, promokey, dollars_sum);

Step 5—Mark the Precomputed View Valid

Mark the precomputed view valid and turn on the query rewrite system:

set precomputed views for sales valid;
set precomputed view query rewrite on;

Step 6—Submit the Query and Note the Performance Gain

Now the precomputed view is available for query rewriting:

RISQL> select sum(dollars)

from sales natural join promotion natural join period

where promo_type = 900;

** STATISTICS ** (500) Compilation = 00:00:00.12 cp time,
00:00:00.11 time, Logical 10 count=99

7200.00
** INFORMATION ** (1462) SQL statement was rewritten to use one or
more precomputed views.
** STATISTICS ** (1457) EXCHANGE (ID: 2) Parallelism over 1 times
High: 2 Low: 2 Average: 2.
** STATISTICS ** (1457) EXCHANGE (ID: 5) Parallelism over 1 times
High: 1 Low: 1 Average: 1.
** STATISTICS ** (1457) EXCHANGE (ID: 7) Parallelism over 1 times
High: 1 Low: 1 Average: 1.
* STATISTICS ** (500) Time = 00:00:00.18 cp time, 00:00:00.23 time,
Logical 10 count=99
* INFORMATION ** (256) 1 rows returned.
RISQL>

The system automatically used the precomputed view to rewrite this query,
improving its performance.

5-16 Red Brick Vista User’s Guide

Using the Advisor
Interpreting the Results of Advisor Queries

Interpreting the Results of Advisor Queries

There is always a cost-benefit trade-off in creating precomputed views. The
cost is in disk space, time to create, time to load, and time to administer. The
benefit is better query performance. Users always favor faster performance.
The warehouse administrator must evaluate this trade-off and decide what
precomputed views to create and/or remove, and the Advisor is a tool to help
make those decisions.

The three most important columns for interpreting Advisor query results are
BENEFIT, SIZE, and REFERENCE_COUNT.

BENEFIT Column

When you interpret the BENEFIT column, remember that the larger the number,
the greater the benefit for that view. Compare the BENEFIT column values with
other values in the same Advisor run. The numbers are not normalized, so if
you have one run from a year ago that captured one week of data and another
run from this month that captured the whole month of data, the numbers are
not comparable with each other. They are, however, comparable with the
numbers for other views from the same run.

For more information on the benefit column, refer to “Understanding the
BENEFIT Column” on page 5-19.

SIZE and REDUCTION_FACTOR Columns

The SIZE column specifies how many rows are in the precomputed view or the
candidate view. A small number means the precomputed table is small, and
small tables are inexpensive. The size in relation to the detail table, however, is
very important. The REDUCTION_FACTOR column gives that ratio, but it is also
useful to look at the raw numbers that make up the ratio.

For example, suppose your detail (fact) table has one billion rows and a query
of the RBW_PRECOMPVIEW_CANDIDATES table shows a candidate view with a
high reference count and a size of 1,000,000 rows. The reduction factor is:

1,000,000,000 /7 1,000,000 = 1,000

So even though this precomputed view would contain a million rows, it is
1,000 times smaller than the detail table, and that is an excellent reduction. Any
reduction is significant, but in general, a reduction greater than 10 indicates
that a view that might is probably worthwhile.

Red Brick Vista User’s Guide 5-17

Using the Advisor
Interpreting the Results of Advisor Queries

If a precomputed view has no rows (SIZE equals 0), the value in the
REDUCTION_FACTOR column is 0. This might be an indication that no rows
have been inserted into the aggregate table.

Note: Also, if you are constraining on the SAMPLE_VIEW_NAME column
(RBW_PRECOMPVIEW_CANDIDATES table), the REDUCTION_FACTOR
and SIZE results are all in relation to the sample view, not the detail table.

REFERENCE_COUNT Column

The REFERENCE_COUNT column specifies how many times a precomputed
view was used (RBW_PRECOMPVIEW_UTILIZATION table) or could have been
used (RBW_PRECOMPVIEW_CANDIDATES table). If this number is small, it
generally indicates that the view is not very good for your database. There
might be cases when it is justified, though, even with a small reference count.
For example, the queries that use the view might be run by the CEO of your
company and she is the one who provides next year’s funding for the data
warehouse.

If the reference counts are high in the RBW_PRECOMPVIEW_UTILIZATION
table, it means the precomputed views are being used. If the reference counts
are low, consider dropping some of them, particularly the ones that are
particularly large or difficult to maintain.

Combining the Results

A “good” number in any particular column by itself is not a compelling reason
to create a candidate view or conclude that an existing view is being well-used.
Only when you look at the numbers together can you tell the value of a given
view. For example, if a view has a high benefit and a high reference count, but
there is another view that can answer the same queries, as well as other
gueries, and that view is only marginally larger, then that means that the other
view is probably the one to create. You need to look at the results together, in
the context of all of the views for a given detail table. In general, though, views
that have high reference counts and small sizes are probably good, low-cost
views to precompute.

It is also important that you have a representative sample of queries in the
Advisor log. If the main users of the database were all at an off-site meeting
during the time the query history was captured, then it is not a representative
sample. The longer the time period logged, the more representative is the
sample and the more accurate are the Advisor results.

5-18 Red Brick Vista User’s Guide

Using the Advisor
Understanding the BENEFIT Column

Understanding the BENEFIT Column

The BENEFIT column of the two Advisor system tables provides a number that
indicates the benefit of a precomputed view based on other views that are
available. In general, the higher the benefit, the more useful the precomputed
view is for your database. The benefit is calculated based on your query
history, so it is vital that there be a representative history in the Advisor log
files.

How the BENEFIT Column Is Calculated

The BENEFIT column calculation is based on:
« The reference count.

= The number of rows that are saved by using the precomputed view instead
of the detail table.

= Other precomputed views that could be used to answer the same questions.

Consider a database with seven precomputed views that all contain the
aggregation sum(dollars), but each one groups on the different columns as

follows:
GROUP BY
A, B, C
(1,000 rows)
L
GROUP BY GROUP BY GROUP BY
A B B,C A C
(100 rows) (100 rows) (100 rows)
L
GROUP BY GROUP BY GROUP BY
A B C
(10 rows) (10 rows) (10 rows)

Red Brick Vista User’s Guide 5-19

Using the Advisor
Understanding the BENEFIT Column

Notice that any query that can be answered by A can also be answered by AB,
AC, or ABC. Similarly, any query that can be answered by B can also be
answered by AB, BC, or ABC; and any query that can be answered by C can
also be answered by BC, AC, or ABC. Because the precomputed views on the
bottom level (A, B, and C) have fewer rows, these views will provide the best
performance. However, they are also the most limited because they will only
answer questions that are based on a single grouping column. The
precomputed view on the top level (grouped by A, B, and C) can answer the
widest range of queries, but it is also 100 times larger than the views on the
bottom level.

The algorithm that calculates the benefit (BENEFIT column) considers the sizes
of the precomputed views (SIZE column) and the number of rows saved by
processing the query using that view; the views’ relationships to each another;
and the number of times the views could have been used
(REFERENCE_COUNT column) to calculate the overall benefit. In the
RBW_PRECOMPVIEW_UTILIZATION table, the benefit refers to how often the
views that exist in your database could have been used, based on the query
history. In the RBW_PRECOMPVIEW_CANDIDATES table, the benefit refers both
to views that exist and to views that do not yet exist.

What the Numbers Mean

The numbers output in the BENEFIT column signify the number of rows that
do not need to be processed, given the precomputed view corresponding to
that row of the Advisor query. In other words, if a view has a benefit of 100,000,
then the existence that view saves the database from processing 100,000 rows
that it would have to process without the view.

Note: The calculation of the BENEFIT column does not take into account any
indexes that exist on the detail table; it assumes a full table scan.

5-20 Red Brick Vista User’s Guide

Using the Advisor
Understanding the BENEFIT Column

Uniform Probability

When the SET UNIFORM PROBABILITY FOR ADVISOR command is set to ON,
the Advisor does not scan the log files when calculating the value for the
BENEFIT column in the RBW_PRECOMPVIEW_UTILIZATION table; instead, it
assumes that all precomputed views have been accessed an equal number of
times and therefore does not consider the value of REFERENCE_COUNT in
determining the value of the BENEFIT column. This saves time when
processing an Advisor query of the RBW_PRECOMPVIEW_UTILIZATION table
and is useful in the following situations:

= You are not concerned with the number of times the precomputed views
have been accessed (REFERENCE_COUNT).

= The log file is excessively large and your Advisor query is taking too long.
= Your log history has skewed data in it.

For example, if you have run a few test queries 1,000 times each in testing
(and logging was enabled during that time), the reference counts on the
precomputed views accessed in those queries will not reflect normal usage.

Red Brick Vista User’s Guide 5-21

Using the Advisor
Understanding the BENEFIT Column

Example

Consider a daily sales table with monthly and yearly precomputed views as
shown in the following figure:

SALES_MONTHLY

monthly precomputed

SALES view grouped by period
and market

3,000,000 rows

daily detail T

SALES_YEARLY

100,000,000 rows
yearly precomputed

view grouped by period
and market
250,000 rows

Consider also the following results from a query of the
RBW_PRECOMPVIEW_UTILIZATION table:

RISQL> select substr(detail_table_name, 1,10) as TABLE_NAME,
> size, reference_count, benefit

> from rbw_precompview_utilization

> where detail_table_name = 'SALES";

TABLE_NAME SIZE REFERENCE_C BENEFIT
SALES 3000000 1000 998994000000
SALES 250000 2 5500000

Any query that could be answered by the yearly table can also be answered by
the monthly table (by adding up all the months in a year, for example), as long
as there is a valid hierarchy between month and year. Because the reference
count is only 2 on the yearly table, and because the benefit is low compared
with the benefit for the monthly table (a factor of 6,000), it would probably be
sufficient to create only the monthly table in this case.

5-22 Red Brick Vista User’s Guide

Using the Advisor
Understanding the BENEFIT Column

When evaluating the benefit numbers in Advisor queries, consider the
following:

= The higher the REFERENCE_COUNT, the higher the benefit.

= The longer the period of time covered in the query history, the higher the
benefit tends to be.

= The smaller the SIZE, the higher the benefit.

If you analyze the Advisor log over a long period of time, the absolute
numbers in the BENEFIT column tend to get larger because the more queries
that are run, the more rows that are processed. These numbers provide
guidelines to aid in your decisions about which views to create. There are no
definitive “best” answers, but instead sets of possible “good” answers that the
you, the DBA, must evaluate based on the specific needs and unique
environment of your site.

Red Brick Vista User’s Guide 5-23

Using the Advisor
Aavisor System Table Column Descriptions

Aavisor System Table Column Descriptions

This section provides the names, the datatypes, and descriptions of each

column in the Advisor system tables.

RBW_PRECOMPVIEW_CANDIDATES Table

The RBW_PRECOMPVIEW_CANDIDATES table contains information necessary
to analyze the benefits of creating new precomputed views to help the
performance of certain queries. This information can also be used to make
decisions on which precomputed views to create.

This table contains one row for each potential candidate view based on the
gueries that are logged and one row for each existing view. If the SQL in the
TEXT column is more than 1,024 bytes, then there is one row for each 1,024-byte
portion of the candidate views. The table contains the following columns:

Column Name Column Type Column Description

DETAIL_TABLE_ CHAR (128) Name of the base (detail) table. This

NAME column must be constrained with a
single detail table per query.

START_DATE TIMESTAMP Start date for aggregate query
analysis. Scope of analysis is defined
by an equality constraint on the
specified date range.

END_DATE TIMESTAMP End date for aggregate query

analysis. Scope of analysis is defined
by an equality constraint on the
specified date range.

AGGR_ELAPSED_ | INTEGER
TIME

Time, in seconds, spent in executing
aggregate parts of the query
sub-plans for a group of queries that
could be represented by a candidate
view.

REFERENCE_
COUNT

INTEGER

Number of times a candidate view
would have been used to answer
gueries referencing the specified
base table.

5-24 Red Brick Vista User’s Guide

Using the Advisor
Aavisor System Table Column Descriptions

Column Name

Column Type

Column Description

SAMPLE_VIEW_
NAME

CHAR(128)

Name of an existing view defined
on the specified detail table that
contains a subset of the rows in the
detail table. Use this to limit the
scope of analysis to a portion of the
detail table. This speeds up the
processing time of the Advisor
analysis.

SIZE

INTEGER

Size (number of rows) of the
precomputed view. If
SAMPLE_VIEW_NAME column is
constrained, the value is the size of
the sample view.

REDUCTION_
FACTOR

DOUBLE (FLOAT)

(Detail table size / View size). Size is
defined as number of rows. This
indicator can be used to predict the
reduction in average number of
rows processed for a query. If
SAMPLE_VIEW_NAME column is
constrained, the value is

(Sample view size / View size).

BENEFIT

DOUBLE (FLOAT)

Benefit of a view with respect to the
set of views being analyzed. That is,
the benefit of a view is computed
by considering how it can improve
the cost of evaluating views,
including itself.

NAME

CHAR(128)

Name of an existing precomputed
view defined on the specified base
table. NULL for candidate views.

SEQ

INTEGER

Sequence number of the view text
for SQL text greater than 1,024
bytes.

TEXT

CHAR(1024)

SQL text representing the candidate
view’s definition.

Red Brick Vista User’s Guide 5-25

Using the Advisor
Aavisor System Table Column Descriptions

RBW_PRECOMPVIEW _UTILIZATION Table

The RBW_PRECOMPVIEW_UTILIZATION table contains information necessary
to analyze the value of precomputed views that were created for a specific
detail table. It also provides insight on a specific view’s utilization and the
costs and benefits of that view with respect to other views answering the same

query.

This table has one row for every valid precomputed view defined in the
database. This includes views that are set to a valid state with the SET USE
INVALID PRECOMPUTED VIEWS ON statement. The table contains the

following columns:

Column Name Column Type Column Description

DETAIL_TABLE_ CHAR(128) Name of the base (detail) table. This

NAME column must be constrained with a
single detail table per query.

START_DATE TIMESTAMP Start date for aggregate query
analysis. Scope of analysis is defined
by an equality constraint on the
specified date range.

END_DATE TIMESTAMP End date for aggregate query
analysis. Scope of analysis is defined
by an equality constraint on the
specified date range.

NAME CHAR(128) Name of precomputed view defined
on the specified base table.

SIZE INTEGER Size of the precomputed view
(number of rows).

REDUCTION_ DOUBLE (FLOAT) | (Detail table size / View size). Size is

FACTOR defined as number of rows. This
indicator can be used to predict the
reduction in average number of
rows processed for a query.

BENEFIT DOUBLE (FLOAT) | Benefit of a view with respect to the
set of views being analyzed.

5-26 Red Brick Vista User’s Guide

Using the Advisor
Aavisor System Table Column Descriptions

Column Name Column Type Column Description

REFERENCE_ INTEGER Number of times a view was used to

COUNT answer queries referencing the
specified base table.

NON_EXACT_ INTEGER Number of times a view was used to

MATCH_COUNT

retrieve information that is not an
exact match of what is stored in the
precomputed view (for example, a
guery that performs another
aggregation on the data in the
precomputed view).

Red Brick Vista User’s Guide 5-27

Using the Advisor
Checklist of Advisor Tasks

Checklist of Advisor Tasks

To use the Advisor:

Action

Page

10.

Enable the Red Brick Vista option with a license
key.

Create the Advisor log file (ADMIN
ADVISOR_LOGGING ON or ALTER SYSTEM START
ADVISOR_LOGGING).

Enable Advisor query logging (OPTION
ADVISOR_LOGGING ON or SET ADVISOR
LOGGING ON).

Provide authority to access the advisor for the
user who will query the Advisor
(ACCESS_ADVISOR_INFO task authorization).

Define any explicit hierarchies with CREATE
HIERARCHY statements that are valid for your
schema.

Log user queries for a significant period of time.
The longer and more representative a sample of
gueries, the better the advice.

Query the RBW_PRECOMPVIEW_UTILIZATION
table to analyze the usefulness of existing
precomputed views.

Query the RBW_PRECOMPVIEW_CANDIDATES
table to analyze precomputed views that, if
created, would improve query performance.

Analyze the results of your Advisor system table
gueries.

Create new precomputed views or remove
existing precomputed views, based on your
analysis.

5-3

5-3

5-7

3-11

5-10

5-12

5-17

Note: For information
about installation, refer to
the Installation and
Configuration Guide.

5-28 Red Brick Vista User’s Guide

Glossary

Advisor

The logging and analysis component of the Red Brick Vista option. The
Advisor measures the benefits of existing precomputed views and suggests
new precomputed views to create based on query history.

aggregate elapsed time
The total amount of time spent processing the aggregation portion of a query.
aggregate navigator

A layer of software that rewrites SQL statements to access aggregate tables
instead of detail-level tables. See query rewrite system.

aggregate table

In general, a table that summarizes or consolidates detail-level records from
other database tables. In the context of the Red Brick Vista option, an aggregate
table is a precomputed table that stores the results of an aggregate query
defined in an associated precomputed view.

aggregate view
See precomputed view.
aggregate-aware SQL

SQL that has been rewritten to use aggregate tables, thereby accelerating query
performance.

Red Brick Vista User’s Guide A-1

Glossary

aggregation query

A query that requires the summarization or consolidation of rows in database
tables, typically using a set function, such as SUM or COUNT, and a GROUP BY
clause.

base table
See detail table.
benefit

A column in the Advisor system tables used to measure the relative benefit of a
precomputed view compared to other precomputed views in the database.

candidate view
A precomputed view suggested by the Advisor.
consolidation

Another term for summarization or aggregation. The data in aggregate tables
“consolidates” detail-level data.

detail table

A base table that contains the detail-level data that is loaded into the data
warehouse from an operational system. For example, the detail records in a
data warehouse used to analyze retail sales might derive from a point-of-sales
(POS) system.

derived dimension

An aggregate dimension table derived from a detail dimension table; also
known as a “shrunken dimension.”

exact match rewrite

A query that can be answered by a precomputed view without performing
additional aggregation.

explicit rollup

See rollup.

A-2 Red Brick Vista User’s Guide

Glossary

functional dependency

A many-to-one relationship shared by columns of values in database tables. A
functional dependency from column X to column Y is a constraint that requires
two rows to have the same value for the Y column if they have the same value
for the X column. See also hierarchy.

generated SQL

SQL as rewritten internally by the Red Brick Vista option for faster query
processing.

grain, granularity

The level of detail of the rows in base tables. The grain of an aggregate table is
coarser than the grain of the detail table from which it is derived.

hierarchy

A functional dependency declared by the warehouse administrator, using the
CREATE HIERARCHY command.

implicit rollup

See rollup.

many-to-one relationship
See functional dependency.
materialized view

See precomputed view.

metadata

System table data that describes database objects and their relationships.

non-exact match rewrite, non-exact match count

A query that is rewritten even though it does not exactly match the data
defined in the precomputed view. The query is rewritten by performing
aggregation on the data in the precomputed view. The number of times such
additional aggregations occur for a given precomputed view is the non-exact
match count. See also exact match.

Red Brick Vista User’s Guide A-3

Glossary

precomputed table

A table associated with a precomputed view in a CREATE VIEW...USING
statement. In the context of the Red Brick Vista option, precomputed tables are
always aggregate tables.

precomputed view

A view linked to a database table known as a precomputed table. The view
defines a query, and the table contains its precomputed results. The query
rewrite system analyzes existing precomputed views to find the optimal way
to rewrite each query.

query rewrite system

An aggregate navigation system that intercepts users’ queries and invisibly
rewrites them to use aggregate tables associated with precomputed views,
thereby accelerating performance.

rollup

The computation of aggregates that are coarser than existing precomputed
aggregates—for example, the rollup of monthly sales totals to quarterly and
annual sales totals. This rollup capability relies on functional dependencies in
the data, as declared explicitly with CREATE HIERARCHY statements or known
implicitly to the query rewrite system through primary key/foreign key
relationships.

rewritten query

A query that is rewritten to use aggregate tables associated with precomputed
views. Query performance is accelerated and the rewrites are transparent to
users.

sample view

A view that defines a subset of the rows in a detail table, used to improve
performance of queries of the RBW_PRECOMPVIEW_CANDIDATES table.

shrunken dimension

See derived dimension.

A-4 Red Brick Vista User’s Guide

A

summary table

Another name for an aggregate table. The term prestored summary is also used
to refer to an aggregate table.

uniform probability

Assumption that all precomputed views were referenced an equal number of
times—an optional mechanism for speeding up queries of the Advisor system
tables.

Red Brick Vista User’s Guide A-5

Glossary

.’ RED BRICK"

A-6 Red Brick Vista User’s Guide

A
ACCESS_ADVISOR_INFO task
authorization 5-7
ADMIN ADVISOR_LOGGING parameter
creating Advisor log files 5-3
Advisor
candidate views 3-11
checklist of tasks 5-28
introductionto 1-5
overview 5-2
Advisor logging
candidate views 5-4
configuring 5-3
correlated subqueries 5-4
log files 5-3
gueries that are not logged 5-5
aggregate queries, defined 2-3
aggregate tables

creating 3-2
defined 2-3
example 3-3
existing 3-4
family of 3-19
loading 3-2

loading with cascaded inserts 3-8
visibility to client tools 3-27
aggregation columns 3-6
aggregation functions 3-6
Aroma database 1-6, 3-3
averages, rewriting queries that
calculate 4-23
AVG function 3-6

Index

B
BENEFIT column
described 5-17
how it is calculated 5-19
understanding 5-19 to 5-23
what numbers mean 5-20
BREAK BY queries, not rewritten 3-9

C
candidate views 3-11
cascaded inserts 3-8
cases, tracked by technical support xvi
compound expressions 3-9
constraint names, in hierarchy
definitions 3-13
conventions
syntax diagrams Xii
syntax notation xi
correlated subqueries
logging 5-4
rewriting 4-20
cost-based analysis, of precomputed
views 3-8
COUNT function 3-6
CREATE HIERARCHY command 2-7,
3-12
CREATE TABLE statements
for aggregate tables 3-4
for derived dimensions 3-20
CREATE VIEW...USING command 3-5
Customer Support Center xv

Red Brick Vista User’s Guide I1X-1

Index

D
data skew 5-5
derived dimensions 2-9
as referenced tables 4-11
creating 3-17
examples of rewritten queries 4-11
precomputed views linked to 3-21
dimension tables, derived 3-17
DISTINCT function 3-6, 3-21
documentation
list of Red Brick Systems ix
support xvii
DROP HIERARCHY command 3-13

E
e-mail addresses, for Red Brick
Systems xv
exact match, defined 5-11
EXCEPT queries 3-10
EXPLAIN command 3-24, 4-21
explicit hierarchies 3-11
defined 2-7
example 2-8
examples of rewritten queries 4-8

F
family of aggregate tables 3-19
foreign-key constraint names, in hierarchy
definitions 3-13
FROM clause subqueries 4-20
functional dependencies 3-11, 4-8
defined 2-6
example 2-8
validity of 3-11

G
generated SQL 3-18
simplified with derived
dimensions 4-15
GROUP BY clause, compound expressions
in 39
grouping columns 3-5

H
HAVING clause 3-7

IX-2 Red Brick Vista User’s Guide

hierarchies
concept of 2-6
explicit 3-11, 4-8
implicit 3-15, 4-16
use with Advisor 5-8
validity of 3-11
verifying validity of 3-14

|
implicit hierarchies 3-15
defined 2-9
examples of rewritten queries 4-16
indexes
for rewritten queries 3-8
on aggregate tables 4-14
INSERT command 3-4
INSERT statements
for derived dimensions 3-20
rewriting 3-8
INTERSECT queries 3-10
invalid precomputed views 3-23
effect on Advisor 5-4

J
join predicates, for precomputed

views 3-7
K
keywords
in syntax diagrams xiv

L

logging, Advisor, See Advisor logging
M

materialized views, See precomputed

views 3-5
MAX function 3-6
metavariables
in syntax diagrams xiv
MIN function 3-6

N

NON_EXACT_MATCH_COUNT
column 5-11
notation conventions Xi

@)

ODBC client applications 3-27

OPTION ADVISOR_LOGGING parameter
enabling Advisor logging 5-4

ORDER BY clause, in rewritten

queries 4-6
outboard tables, rewriting queries
against 2-9,4-9

P
precomputed query expressions 3-5
precomputed tables, See aggregate tables
precomputed views
cost-based analysis
creating 3-5
defined 2-2
example 3-7
join predicates 3-7
linked to derived dimensions
SET commands 3-23
unknown columns 4-7
validity of 3-23
visibility to client tools 3-27
primary key/foreign key relationships,
functional dependenciesin 3-11

3-8

3-21

Q

query blocks, rewritten separately 3-8
query expressions 3-5

query rewrite system 3-1to 3-27

calculating averages 4-23
derived dimensions 4-11
detailed examples 4-1to 4-22
exact-match rewrites 4-3
explicit hierarchies 4-8
implicit hierarchies 4-16
introductionto 1-3

key concepts 2-1to2-9
negative tests 4-7

optimizing rewritten queries 3-17

gueries not rewritten 3-9
query blocks 3-8
rewriting subqueries 4-20
summary of use 3-28

turning on and off 3-24

Index

R

RBW_PRECOMPVIEW_CANDIDATES

table
described 5-24
rules for querying 5-12

RBW_PRECOMPVIEW_UTILIZATION

table

described 5-26
querying 5-10
RBW_TABLES system table
RBW_TABLES VIEW, creating 3-27

RBW_VIEWS system table 3-25

Red Brick ODBC Driver 3-27
REDUCTION_FACTOR column 5-17
REFERENCE_COUNT column 5-18

referenced tables, derived dimensions
as 4-11

3-25, 3-27

rewritten queries, See query rewrite system

rewritten SQL 3-18
RISQL display functions, in rewritten

qgueries 4-7
rollups
defined 2-6

hierarchiesand 3-11

S
SAMPLE_VIEW_NAME column
SET commands, for precomputed
views 3-23
set functions 3-6
SET STATS INFO command 3-24, 4-2
shrunken dimensions, See derived
dimensions
SIZE column 5-17
SQLTables function 3-27
STARindexes, for aggregate tables
4-14, 4-18
STARjoin query, rewritten 4-3
statistics messages, for queries
subqueries, rewriting 4-20
SUM function 3-6
support
documentation
technical xv

4-2

XVii

Red Brick Vista User’s Guide

5-12

3-18,

1X-3

Index

syntax diagrams
conventions for Xxii
keywords in xiv
metavariables in xiv
syntax notation xi
system tables, querying view-related 3-25

T
technical support xv
temporary tables, use with Advisor 5-8
troubleshooting

general problems xvii

]
UNIFORM PROBABILITY FOR ADVISOR
command 5-21
UNION queries
separate query blocks for 3-8
when rewritten 3-10

IX-4 Red Brick Vista User’s Guide

USING clause, in CREATE VIEW
command 3-5

\Y
validity

of hierarchies 3-11

of precomputed views 3-23
view of RBW_TABLES 3-27
views, See precomputed views

w
WHEN clause
disallowed in view definitions 3-7
in rewritten queries 4-7
WHERE clause predicates, in rewritten
queries 4-6
World Wide Web address, for Red Brick
Systems xv

.’ RED BRICK®

USA SALES
OFFICES

UK SALES
OFFICE

AUSTRALASIA
HEADQUARTERS

JAPAN
HEADQUARTERS

1040 Crowne Point Parkway, Suite 250, Atlanta, GA 30338 +1 770 804 2440
2215 York Road, Suite 409, Oak Brook, IL 60521 +1 630 472 8500

1120 Avenue of the Americas, 4th Floor, New York, NY 10036 +1 212 626 6815
5314 Arapaho Road, Dallas, TX 75248 +1 972 702 1750

2010 Corporate Ridge, 7th Floor, McLean, VA 22102 +1 703 883 9310

Red Brick Systems UK Ltd., 45 Berkeley Square, Mayfair, London W1A 1EB
United Kingdom +44 171 290 8373

Red Brick Systems Australasia Pty. Ltd., Level 20, 99 Walker Street,
North Sydney, NSW 2060 Australia +61 02 9911 7744

Red Brick Japan Co. Ltd., Level 16 Shiroyama Hills, 4-3-1 Toranomon,
Minato-ku, Tokyo 105 Japan +81 3 5403 4638

	Contents
	About This Document
	Purpose
	Audience
	Organization
	Related Documentation
	Conventions
	Syntax Notation
	Syntax Diagrams
	Keywords and Punctuation
	Identifiers and Names

	Customer Support
	Support Solutions Warehouse
	General and Technical Questions
	Troubleshooting Tips
	Documentation Questions and Comments

	Introduction to Red Brick Vista
	Aggregations in the Data Warehouse
	Aggregate Query Performance
	The Query Rewrite System
	How Aggregate Queries Are Rewritten

	The Advisor
	Summary

	Key Concepts of Query Rewriting
	Precomputed Views
	Aggregate Tables
	Aggregate Query Rewrites

	Rollups and Hierarchies
	Functional Dependencies
	Derived Dimensions

	Using the Query Rewrite System
	Creating Aggregate Tables
	Populating Aggregate Tables
	Example of an Aggregate Table

	Creating Precomputed Views
	CREATE VIEW...USING Command
	Example View Definition
	Cost-Based Analysis of Precomputed Views

	Using Hierarchies
	Explicit Hierarchies
	Implicit Hierarchies

	Optimizing Query Rewrites
	Creating Derived Dimensions
	Creating Indexes

	Setting Up the Query-Rewriting Environment
	Marking Precomputed Views Valid
	Turning On the Query Rewrite System
	Generating Statistics
	Querying the RBW_VIEWS System Table
	Making Precomputed Views Invisible to Client Tools

	Checklist of Query-Rewriting Tasks

	Query Rewrite Case Studies
	General Instructions
	Case 1—Rewriting a STARjoin Query
	Case 2—Making Use of Explicit Hierarchies
	Case�3—Optimizing Query Rewrites with Derived Dimensions
	Case 4—Using Implicit Hierarchies to Rewrite Queries
	Case 5—Rewriting Subqueries
	Case 6—Rewriting a Query That Calculates Averages

	Using the Advisor
	Advisor Overview
	Analysis of Query Patterns
	Advisor System Tables
	Advisor Log Files

	Configuring the Advisor Logging System
	Creating the Advisor Log Files
	Logging Queries
	Setting the ACCESS_ADVISOR_INFO Task Authorization
	Defining Valid Hierarchies

	Querying the Advisor
	Inserting the Results of an Advisor Query Into a Table
	Querying the RBW_PRECOMPVIEW_UTILIZATION Table
	Querying the RBW_PRECOMPVIEW_CANDIDATES Table

	Interpreting the Results of Advisor Queries
	BENEFIT Column
	SIZE and REDUCTION_FACTOR Columns
	REFERENCE_COUNT Column
	Combining the Results

	Understanding the BENEFIT Column
	How the BENEFIT Column Is Calculated
	What the Numbers Mean
	Uniform Probability

	Advisor System Table Column Descriptions
	RBW_PRECOMPVIEW_CANDIDATES Table
	RBW_PRECOMPVIEW_UTILIZATION Table

	Checklist of Advisor Tasks

	Glossary
	Index

